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We introduce a new notion for the deformation of Gabor 
systems. Such deformations are in general nonlinear and, 
in particular, include the standard jitter error and linear 
deformations of phase space. With this new notion we prove 
a strong deformation result for Gabor frames and Gabor 
Riesz sequences that covers the known perturbation and 
deformation results. Our proof of the deformation theorem 
requires a new characterization of Gabor frames and Gabor 
Riesz sequences. It is in the style of Beurling’s characterization 
of sets of sampling for bandlimited functions and extends 
significantly the known characterization of Gabor frames 
“without inequalities” from lattices to non-uniform sets.
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Stability estimate
Weak limit

1. Introduction

The question of robustness of a basis or frame is a fundamental problem in functional 
analysis and in many concrete applications. It has its historical origin in the work of 
Paley and Wiener (see, e.g., [40]) who studied the perturbation of Fourier bases and was 
subsequently investigated in many contexts in complex analysis and harmonic analysis. 
Particularly fruitful was the study of the robustness of structured function systems, such 
as reproducing kernels, sets of sampling in a space of analytic functions, wavelets, or 
Gabor systems. In this paper we take a new look at the stability of Gabor frames and 
Gabor Riesz sequences with respect to general deformations of phase space.

To be explicit, let us denote the time–frequency shift of a function g ∈ L2(Rd) along 
z = (x, ξ) ∈ R

d × R
d � R

2d by

π(z)g(t) = e2πiξ·tg(t− x) .

For a fixed non-zero function g ∈ L2(Rd), usually called a “window function”, and 
Λ ⊆ R

2d, a Gabor system is a structured function system of the form

G(g,Λ) =
{
π(λ)g := e2πiξ·g(· − x) : λ = (x, ξ) ∈ Λ

}
.

The index set Λ is a discrete subset of the phase space R2d and λ indicates the localization 
of a time–frequency shift π(λ)g in phase space.

The Gabor system G(g, Λ) is called a frame (a Gabor frame), if

A ‖f‖2
2 ≤

∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ B ‖f‖2
2 , f ∈ L2(Rd),

for some constants 0 < A ≤ B < ∞. In this case every function f ∈ L2(Rd) possesses 
an expansion f =

∑
λ cλπ(λ)g, for some coefficient sequence c ∈ �2(Λ) such that ‖f‖2 


‖c‖2. The Gabor system G(g, Λ) is called a Riesz sequence (or Riesz basis for its span), 
if ‖

∑
λ cλπ(λ)g‖2 
 ‖c‖2 for all c ∈ �2(Λ).

For meaningful statements about Gabor frames it is usually assumed that
∫

R2d

|〈g, π(z)g〉| dz < ∞.

This condition describes the modulation space M1(Rd), also known as the Feichtinger 
algebra. Every Schwartz function satisfies this condition.

In this paper we study the stability of the spanning properties of G(g, Λ) with re-
spect to a set Λ ⊆ R

2d. If Λ′ is “close enough” to Λ, then we expect G(g, Λ′) to possess 
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