

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

High density piecewise syndeticity of sumsets

MATHEMATICS

1

Mauro Di Nasso^a, Isaac Goldbring^b, Renling Jin^c, Steven Leth^{d,*}, Martino Lupini^{e,f}, Karl Mahlburg^g

^a Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, Pisa 56127, Italy

^b Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Science and Engineering Offices M/C 249, 851 S. Morgan St.,

Chicago, IL 60607-7045, United States

 $^{\rm c}$ Department of Mathematics, College of Charleston, Charleston, SC 29424, United States

^d School of Mathematical Sciences, University of Northern Colorado,

Campus Box 122, 510 20th Street, Greeley, CO 80639, United States

^e Department of Mathematics and Statistics, York University, N520 Ross,

4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

^f Fields Institute, 222 College Street, Toronto, Ontario M5T 3J1, Canada

^g Department of Mathematics, Louisiana State University, 228 Lockett Hall,

Baton Rouge, LA 70803-4918, United States

ARTICLE INFO

Article history: Received 19 November 2013 Accepted 23 March 2015 Available online 3 April 2015 Communicated by H. Jerome Keisler

MSC: 11B13 11B05 03H05 03H15

Keywords: Sumsets of integers Asymptotic density

ABSTRACT

Renling Jin proved that if A and B are two subsets of the natural numbers with positive Banach density, then A + B is piecewise syndetic. In this paper, we prove that, under various assumptions on positive lower or upper densities of A and B, there is a high density set of witnesses to the piecewise syndeticity of A + B. Most of the results are shown to hold more generally for subsets of \mathbb{Z}^d . The key technical tool is a Lebesgue density theorem for measure spaces induced by cuts in the nonstandard integers.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: dinasso@dm.unipi.it (M. Di Nasso), isaac@math.uic.edu (I. Goldbring), JinR@cofc.edu (R. Jin), Steven.Leth@unco.edu (S. Leth), mlupini@yorku.ca (M. Lupini), mahlburg@math.lsu.edu (K. Mahlburg).

http://dx.doi.org/10.1016/j.aim.2015.03.009 0001-8708/© 2015 Elsevier Inc. All rights reserved. Nonstandard analysis

1. Introduction and preliminaries

1.1. Sumsets and piecewise syndeticity

The earliest result on the relationships between density of sequences, sum or difference sets, and syndeticity is probably Furstenberg's theorem mentioned in [7, Proposition 3.19]: If A has positive upper Banach density, then A - A is syndetic, i.e. has bounded gaps. The proof of the theorem is essentially a pigeonhole argument.

In [9] Jin shows that if A and B are two subsets of \mathbb{N} with positive upper Banach densities, then A + B must be piecewise syndetic, i.e. for some m, A + B + [0, m] contains arbitrarily long intervals. Jin's proof uses nonstandard analysis. In [11], this result is extended to abelian groups with tiling structures. In [9,11] the question as to whether this result can be extended to any countable amenable group is posed, and in [2] a positive answer to the above question is proven. It is shown that if A and B are two subsets of a countable amenable group with positive upper Banach densities, then $A \cdot B$ is piecewise Bohr, which implies piecewise syndeticity. In fact, a stronger theorem is obtained in the setting of countable abelian groups: A set S is piecewise Bohr if and only if S contains the sum of two sets A and B with positive upper Banach densities. Jin's theorem was generalized to arbitrary amenable groups in [5]. At the same time, several new proofs of the theorem in [9] have appeared. For example, an ultrafilter proof is obtained in [1]. A more quantitative proof that includes a bound based on the densities is obtained in [4] by nonstandard methods, and in [3] by elementary means.

However, there has not been any progress on extending the theorem in [9] to lower asymptotic density or upper asymptotic density instead of upper Banach density. Of course, if A and B have positive lower (upper) asymptotic densities then they have positive Banach density, so A+B must be piecewise syndetic. In this paper we show that there is significant uniformity to the piecewise syndeticity in the sense that there are a large density of points in the sumset with no gap longer than some fixed m. Furthermore, this can be extended to all finite dimensions. Specifically we show the following:

Theorem 1. Suppose that A and B are subsets of \mathbb{Z}^d . For $m, k \in \mathbb{N}$, set

$$S_{m,k}(A,B) := \{ z \in \mathbb{Z}^d : z + [-k,k]^d \subseteq A + B + [-m,m]^d \}.$$

Then:

1. If A has positive upper density α and B has positive Banach density, then there exists an m such that, for all k, $S_{m,k}(A, B)$ has upper density at least α (Theorem 14). Download English Version:

https://daneshyari.com/en/article/4665486

Download Persian Version:

https://daneshyari.com/article/4665486

Daneshyari.com