

Contents lists available at ScienceDirect

Advances in Mathematics

Hall–Littlewood polynomials and vector bundles on the Hilbert scheme

Erik Carlsson

ICTP, Italy

ARTICLE INFO

Article history: Received 3 June 2013 Accepted 20 February 2015 Available online 11 April 2015 Communicated by Ezra Miller

Keywords: Representation theory Combinatorics Symmetric functions Hilbert scheme Hall-Littlewood polynomials

ABSTRACT

Let E be the bundle defined by applying a polynomial functor to the tautological bundle on the Hilbert scheme of n points in the complex plane. By a result of Haiman [5], the Čech cohomology groups $H^{i}(E)$ vanish for all i > 0. It follows that the equivariant Euler characteristic with respect to the standard two-dimensional torus action has nonnegative integer coefficients in the torus variables z_1, z_2 , because they count the dimensions of the weight spaces of $H^0(E)$. We derive a formula for this Euler characteristic using residue formulas for the Euler characteristic coming from the description of the Hilbert scheme as a quiver variety [13,14]. We evaluate this expression using Jing's Hall-Littlewood vertex operator with parameter z_1 [7], and a new vertex operator formula given in Proposition 1 below. We conjecture that the summand in this formula is a polynomial in z_1 with nonnegative integer coefficients, a special case of which was known to Lascoux and Schützenberger [8].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $\operatorname{Hilb}_n \mathbb{C}^2$ denote the Hilbert scheme of n points in the complex plane, and consider the standard two-dimensional torus action on it induced from the planar action

E-mail address: ecarlsso@ictp.it.

$$T = (\mathbb{C}^*)^2 \circlearrowleft \mathbb{C}^2, \quad (z_1, z_2) \cdot (x, y) = (z_1^{-1} x, z_2^{-1} y) \tag{1}$$

by pullback of ideals. We also have an n-dimensional tautological bundle \mathcal{U} on the Hilbert scheme, whose fiber over a subscheme Z defining a point in $\mathrm{Hilb}_n\mathbb{C}^2$ is simply the space of sections of \mathcal{O}_Z , and which inherits an action of T, see [10] for details. Given a polynomial representation ρ of GL_n , we obtain a new equivariant bundle $E = \rho(\mathcal{U})$, whose fibers are given by applying ρ to the fibers of \mathcal{U} . For instance, if ρ is given by the kth exterior power of the defining representation of GL_n , then $E = \Lambda^k \mathcal{U}$ is the kth exterior power of \mathcal{U} . If ρ_μ is the irreducible polynomial representation of GL_n corresponding to a partition μ , then by Schur–Weyl duality $\rho_\mu(\mathcal{U})$ is the subbundle of $\mathcal{U}^{\boxtimes k}$ associated to the irreducible subrepresentation χ_μ of S_k for $k = |\mu|$, which acts by permuting the factors. The corresponding functor is called the Schur functor.

We may consider the Čech cohomology groups $H^i(E)$, as well as the equivariant Euler characteristic

$$\chi_n(E) = \sum_i (-1)^i \operatorname{ch} H^i_{\operatorname{Hilb}_n}(E) \in \mathbb{Z}[[z_1^{\pm 1}, z_2^{\pm 1}]],$$

where ch denotes the character of $H^i(E)$ as a representation of T. If Λ is the ring of symmetric polynomials in infinitely many variables, the polynomial representations are in the image of the map

$$\Lambda \to K_T(\mathrm{Hilb}_n \mathbb{C}^2), \quad s_\mu \mapsto \mathbb{S}_\mu(\mathcal{U}),$$

where $s_{\mu} \in \Lambda$ is the Schur polynomial, \mathbb{S}_{μ} is the corresponding representation of GL_n (the Schur functor), and μ is a partition. Since the Euler characteristic is defined at the level of K-theory, we have a well defined Euler characteristic $\chi_n(f(\mathcal{U}))$, for any symmetric function $f \in \Lambda$.

The main result of this paper is the following:

Theorem A. The Euler characteristic is given by

$$\chi_n(f(\mathcal{U})) = \sum_{\mu,\nu} z_2^{|\mu|} z_1^{|\mu|+k_{\mu\nu}} b_{\nu,n}(z_1)^{-1} f_{\nu\mu}(z_1).$$

Here $k_{\mu\nu}$ is an integer, $b_{\nu,n}(z)$ is the norm squared of the Hall–Littlewood polynomial $P_{\nu}(X;z)$ in n variables, and $f_{\nu\mu}(z)$ is the matrix element of the operator of multiplication by f in the Hall–Littlewood basis.

We conjecture that the coefficients of the polynomial $f_{\nu\mu}(z)$ are nonnegative integers whenever f defines an honest representation, i.e. is a nonnegative integral linear combination of Schur polynomials. This positivity is a combinatorial manifestation of a result of Haiman which says that the Čech cohomology groups $H^i(\mathcal{U}^{\otimes l} \otimes P)$ vanish for i > 0, where P is the Procesi bundle [5]. Since the trivial bundle is a summand of the Procesi

Download English Version:

https://daneshyari.com/en/article/4665488

Download Persian Version:

https://daneshyari.com/article/4665488

<u>Daneshyari.com</u>