Advances in Mathematics 275 (2015) 47–113

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Product set phenomena for countable groups

MATHEMATICS

霐

Michael Björklund^{a,*,1}, Alexander Fish^b

^a Department of Mathematics, ETH Zürich, Zürich, Switzerland
^b School of Mathematics and Statistics, University of Sydney, Australia

ARTICLE INFO

Article history: Received 5 October 2013 Accepted 11 February 2015 Available online 27 February 2015 Communicated by the Managing Editors of AIM

MSC: primary 37B05 secondary 05C81, 11B13, 11K70

Keywords: Ergodic Ramsey theory Random walks on groups Topological dynamics Additive combinatorics

ABSTRACT

We develop in this paper novel techniques to analyze local combinatorial structures in product sets of two subsets of a countable group which are "large" with respect to certain classes of (not necessarily invariant) means on the group. Our methods heavily utilize the theory of C*-algebras and random walks on groups. As applications of our methods, we extend and quantify a series of recent results by Jin, Bergelson– Furstenberg–Weiss, Beiglböck–Bergelson–Fish, Griesmer and Di Nasso–Lupini to general countable groups.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. General comments

Let G be a group and let \mathfrak{L} , \mathfrak{R} and \mathfrak{S} be given sets of subsets of G. We shall think of \mathfrak{L} and \mathfrak{R} as defining two (possibly different) classes of *large* subsets of the group and the elements of \mathfrak{S} will be regarded as the *structured* subsets of G.

* Corresponding author.

E-mail addresses: micbjo@chalmers.se (M. Björklund), alexander.fish@sydney.edu.au (A. Fish).

¹ Current address: Department of Mathematics, Chalmers, Gothenburg, Sweden.

In this paper, the term *product set phenomenon* (with respect to the sets \mathfrak{L} , \mathfrak{R} and \mathfrak{S}) will refer to the event that whenever $A \in \mathfrak{L}$ and $B \in \mathfrak{R}$, then their *product set* AB, defined by

$$AB := \left\{ a \cdot b \, : \, a \in A, \ b \in B \right\}$$

belongs to \mathscr{S} . If this happens, we shall say that the pair $(\mathfrak{L}, \mathfrak{R})$ is \mathfrak{S} -regular.

Perhaps the first occurrence of a (non-trivial) product set phenomenon recorded in the literature is the following classical observation, which is often attributed to Steinhaus (see e.g. [22]): Let G be a locally compact group with left Haar measure m and define

$$\mathfrak{L} := \Big\{ A \in \mathscr{B}(G) \, : \, m(A) > 0 \Big\},\$$

where $\mathscr{B}(G)$ denotes the set of Borel sets of G. Let \mathfrak{S} denote the set of all subsets of G with non-empty interior. Then the pair $(\mathfrak{L}, \mathfrak{L})$ is \mathfrak{S} -regular, that is to say, the product set of any two Borel sets with positive Haar measures contains a non-empty open set.

1.2. Structured sets in countable groups

This paper is concerned with product set phenomena in *countable* groups. To explain our main results, we first need to define what classes of *large* sets and *structured* sets we shall consider. We begin by describing our choices of the structured sets.

Let G be a countable group. A set $T \subset G$ is right thick if whenever $F \subset G$ is a finite subset, then there exists g in G such that

$$F \cdot g \subset T.$$

We say that a set $C \subset G$ is *left syndetic* if it has non-trivial intersection with any right thick set, or equivalently, if there exists a finite set $F \subset G$ such that FC = G. Let Syn denote the set of all left syndetic subsets of G and define the class of *right piecewise left* syndetic sets PW-Syn by

$$PW-Syn := \left\{ C \cap T \ : \ C \text{ is left syndetic and } T \text{ is right thick} \right\}$$

Equivalently, a set $C \subset G$ is right piecewise left syndetic if there exists a finite set $F \subset G$ such that the product set FC is right thick.

A particularly nice sub-class of left syndetic sets is formed by the so called *Bohr* sets. Recall that a set $C \subset G$ is *Bohr* if there exist a compact Hausdorff group K, an epimorphism $\tau : G \to K$ (a homomorphism with dense image) and a non-empty open set $U \subset K$ such that

$$C \supset \tau^{-1}(U).$$

Download English Version:

https://daneshyari.com/en/article/4665503

Download Persian Version:

https://daneshyari.com/article/4665503

Daneshyari.com