

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Decay of eigenfunctions of elliptic PDE's, I

I. Herbst ^{a,*}, E. Skibsted ^b

- $^{\rm a}$ Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
- ^b Institut for Matematiske Fag, Aarhus Universitet, Ny Munkegade, 8000 Aarhus C, Denmark

ARTICLE INFO

Article history: Received 9 July 2013 Accepted 2 November 2014 Available online 14 November 2014 Communicated by Charles Fefferman

Keywords: Eigenfunctions Exponential decay Microlocal analysis Combinatorics

ABSTRACT

We study exponential decay of eigenfunctions of self-adjoint higher order elliptic operators on \mathbb{R}^d . We show that the possible (global) critical decay rates are determined algebraically. In addition we show absence of super-exponentially decaying eigenfunctions and a refined exponential upper bound.

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction and results	139
	1.1.	Results	140
	1.2.	Principal example, $Q(\xi) - \lambda = G(\xi^2)$	143
	1.3.	Local critical decay rate	144
	1.4.	Notation and some calculus considerations	145
2.	Ideas	of proof of Theorems 1.2 and 1.3	147
3.	Prelin	ninaries	149
	3.1.	Calculus of pseudodifferential operators	149
	3.2.	Exponentially conjugated operator	150
	3.3.	Exponentially weighted Sobolev estimate	151
	3.4.	More elliptic estimates	153

E-mail addresses: iwh@virginia.edu (I. Herbst), skibsted@imf.au.dk (E. Skibsted).

^{*} Corresponding author.

4.	A prio	ri energy localization	154	
	4.1.	Sobolev regularity bounds	155	
	4.2.	Refined energy bounds	155	
	4.3.	Other parameter-dependent bounds	159	
5.	Proof	of Theorem 1.2(i)	160	
6.	Proof	of Theorem 1.3	161	
7.	Proof	of Theorem 1.2(ii)	163	
8.	Proof	of Theorem 1.1	164	
9.	Proof	of Theorems 1.4 and 1.5	167	
	9.1.	Calculation of a commutator	167	
	9.2.	Proof of Theorem 1.4	171	
	9.3.	Symmetrized estimate	172	
	9.4.	Proof of Theorem 1.5	173	
Appendix A. Metric and weight conditions		Metric and weight conditions	177	
References				

1. Introduction and results

Consider a real elliptic polynomial Q of degree q on \mathbb{R}^d . We consider the operator $H=Q(p)+V(x), p=-\mathrm{i}\nabla$, on $L^2=L^2(\mathbb{R}^d)$ with V real-valued, bounded and measurable and with $\lim_{|x|\to\infty}V(x)=0$. By the assumptions on Q the operator Q(p) is self-adjoint on the standard Sobolev space of order q which consequently is the domain of H too. The goal of the paper is to study exponential decay of L^2 -eigenfunctions of H. It is the first in a series of two papers on the subject, the second one is [10].

We will mostly assume there is a splitting of V, $V = V_1 + V_2$, into real-valued bounded functions, V_1 smooth and V_2 measurable, with additional assumptions depending on the result. With virtually no complication of proofs V_2 could be taken complex-valued.

For a given $\lambda \in \mathbb{R}$ the energy surface

$$S_{\lambda} = \{(x, \xi) \in \mathbb{R}^d \times \mathbb{R}^d | Q(\xi) = \lambda \}$$

is by definition regular if λ is not a critical value of Q, that is if

$$\nabla Q(\xi) \neq 0 \quad \text{on } S_{\lambda}.$$
 (1.1)

We will need this condition in one of our results.

Suppose $(H - \lambda)\phi = 0$, $\phi \in L^2$. The *critical decay rate* is defined as

$$\sigma_{\rm c} = \sup \{ \sigma \ge 0 | \mathrm{e}^{\sigma|x|} \phi \in L^2 \}.$$

In this paper we shall study this notion of global decay rate for eigenfunctions, cf. previous works for the Laplacian [3,6–8] corresponding to the case $Q(\xi) = \xi^2$. We devote [10] to the study of the so-called local critical decay rate, see Subsection 1.3 for a definition and an announcement of some results of the second paper of this series. In particular we give in the present paper necessary (phase-space) conditions for a positive number σ to

Download English Version:

https://daneshyari.com/en/article/4665569

Download Persian Version:

https://daneshyari.com/article/4665569

Daneshyari.com