

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Advances in Mathematics

www.elsevier.com/locate/aim

On the dimension of the graph of the classical Weierstrass function \overline{X}

MATHEMATICS

屋

Krzysztof Barański ^a*,*∗, Balázs Bárány ^b*,*^c, Julia Romanowska ^a

^a *Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland* ^b *Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956*

Warszawa, Poland ^c *Budapest University of Technology and Economics, MTA-BME Stochastics*

Research Group, P.O. Box 91, 1521 Budapest, Hungary

A R T I C L E I N F O A B S T R A C T

Article history: Received 29 June 2014 Accepted 21 July 2014 Available online 13 August 2014 Communicated by Kenneth Falconer

MSC: primary 28A80, 28A78 secondary 37C45, 37C40

Keywords: Hausdorff dimension Weierstrass function

This paper examines dimension of the graph of the famous Weierstrass non-differentiable function

$$
W_{\lambda,b}(x) = \sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)
$$

for an integer $b \geq 2$ and $1/b < \lambda < 1$. We prove that for every *b* there exists (explicitly given) $\lambda_b \in (1/b, 1)$ such that the Hausdorff dimension of the graph of $W_{\lambda,b}$ is equal to $D = 2 + \frac{\log \lambda}{\log b}$ for every $\lambda \in (\lambda_b, 1)$. We also show that the dimension is equal to D for almost every λ on some larger interval. This partially solves a well-known thirty-yearold conjecture. Furthermore, we prove that the Hausdorff dimension of the graph of the function

$$
f(x) = \sum_{n=0}^{\infty} \lambda^n \phi(b^n x)
$$

Corresponding author.

E-mail addresses: baranski@mimuw.edu.pl (K. Barański), balubsheep@gmail.com (B. Bárány), romanoju@mimuw.edu.pl (J. Romanowska).

<http://dx.doi.org/10.1016/j.aim.2014.07.033> 0001-8708/© 2014 Elsevier Inc. All rights reserved.

[✩] Krzysztof Barański was partially supported by Polish NCN Grant N N201 607940. Balázs Bárány was supported by the fellowship of the Warsaw Center of Mathematics and Computer Science – KNOW.

for an integer $b \geq 2$ and $1/b < \lambda < 1$ is equal to *D* for a typical \mathbb{Z} -periodic C^3 function ϕ . © 2014 Elsevier Inc. All rights reserved.

1. Introduction and statements

This paper is devoted to the study of dimension of the graphs of functions of the form

$$
f_{\lambda,b}^{\phi}(x) = \sum_{n=0}^{\infty} \lambda^n \phi(b^n x)
$$
 (1.1)

for $x \in \mathbb{R}$, where $b > 1$, $1/b < \lambda < 1$ and $\phi : \mathbb{R} \to \mathbb{R}$ is a non-constant Z-periodic Lipschitz continuous piecewise $C¹$ function. The famous example

$$
W_{\lambda,b}(x) = \sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x),
$$

for $\phi(x) = \cos(2\pi x)$, was introduced by Weierstrass in 1872 as one of the first examples of a continuous nowhere differentiable function on the real line. In fact, Weierstrass proved the non-differentiability for some values of the parameters, while the complete proof was given by Hardy [\[9\]](#page--1-0) in 1916. Later, starting from the work of Besicovitch and Ursell [\[5\],](#page--1-0) the graphs of $f^{\phi}_{\lambda,b}$ and related functions were studied from a geometric point of view as fractal curves in the plane.

The graph of a function $f_{\lambda,b}^{\phi}$ of the form (1.1) is approximately self-affine with scales λ and $1/b$, which suggests that its dimension should be equal to

$$
D = 2 + \frac{\log \lambda}{\log b}.
$$

Indeed, Kaplan, Mallet-Paret and Yorke [\[12\]](#page--1-0) proved that the box dimension of the graph of every function (1.1) or, more general, every function of the form

$$
f(x) = \sum_{n=0}^{\infty} \lambda^n \phi(b^n x + \theta_n), \qquad (1.2)
$$

where $\theta_n \in \mathbb{R}$, is equal to *D*. However, the question of determining the Hausdorff dimension turned out to be much more complicated.

In 1986, Mauldin and Williams [\[18\]](#page--1-0) proved that if a function *f* has the form (1.2), then for given *D* there exists a constant $C > 0$ such that the Hausdorff dimension of the graph is larger than $D - C/\log b$ for large *b*. Shortly after, Przytycki and Urbański showed in [\[21\]](#page--1-0) that the Hausdorff dimension of the graph of *f* is larger than 1 under some weaker assumptions.

Download English Version:

<https://daneshyari.com/en/article/4665617>

Download Persian Version:

<https://daneshyari.com/article/4665617>

[Daneshyari.com](https://daneshyari.com/)