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Let E ⊆ P2 be a complex rational cuspidal curve contained in 
the projective plane and let (X, D) → (P2, E) be the minimal 
log resolution of singularities. Applying the log Minimal 
Model Program to (X, 12D) we prove that if E has more than 
two singular points or if D, which is a tree of rational curves, 
has more than six maximal twigs or if P2 \ E is not of log 
general type then E is Cremona equivalent to a line, i.e. the 
Coolidge–Nagata conjecture for E holds. We show also that if 
E is not Cremona equivalent to a line then the morphism onto 
the minimal model contracts at most one irreducible curve not 
contained in D.
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1. Main results and strategy

Let Ē ⊆ P2 be a complex planar rational curve which is cuspidal, i.e. which has 
only locally analytically irreducible (unibranched) singularities. Equivalently, it can be 
defined as an image of a singular embedding of a complex projective line into a complex 
projective plane, i.e. of a morphism P1 → P2 which is 1–1 on closed points. We say 
that two planar curves are Cremona equivalent if one of them is a proper transform 
of the other under some Cremona transformation of P2. Not all rational curves on P2

are Cremona equivalent to a line (a general rational curve of degree at least six is not, 
see 2.6) and, clearly, the proper transform of Ē under a Cremona transformation does 
not have to be cuspidal. Therefore, the conjecture that nevertheless all cuspidal curves 
are Cremona equivalent to a line, which is known as the Coolidge–Nagata conjecture, 
comes as a surprise. It has been studied for a long time.2 Let c be the number of cusps 
of Ē and let (X, D) → (P2, Ē) be the minimal log resolution of singularities. In [14] we 
proved that

c ≤ 9 − 2p2
(
P2, Ē

)
,

where p2(P2, Ē) = h0(2KX + D). Let E be the proper transform of Ē on X. The 
Coolidge–Nagata conjecture for Ē ⊆ P2 is known to be equivalent to the vanishing of 
h0(2KX +E), so if it fails for Ē then we get a lower bound p2(P2, Ē) ≥ h0(2KX +E) ≥ 1. 
The higher lower bound on p2(P2, Ē) we can prove, the bigger is the restriction on c (in 
fact also on many other parameters describing the geometry of Ē ⊆ P2), and hence 
the closer we are to proving the conjecture. Deepening the analysis of minimal models 
of (X, 12D) started in [14] (which is an analog of the ‘theory of peeling’ [8, §2.3] for 
half-integral divisors) we show here the following result.

Theorem 1.1. Let Ē ⊆ P2 be a complex rational cuspidal curve which is not Cremona 
equivalent to a line and let (X, D) → (P2, Ē) be the minimal log resolution of singulari-
ties. Then p2(P2, Ē) ∈ {3, 4}. Equivalently, (KX + D)2 ∈ {1, 2}.

2 Coolidge [2, Book IV, §II.2] and Nagata [11] studied planar rational curves and their behavior under the 
action of the Cremona group. The problem of determining which rational curves are Cremona equivalent 
to a line is known as the ‘Coolidge–Nagata problem’.
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