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1. Introduction

Dyadic techniques are nowadays fundamental in harmonic analysis. Their origin goes
back to Hardy, Littlewood, Paley and Walsh, among others. In the context of martin-
gale inequalities, the dyadic maximal and square functions arise as particular cases of
Doob’s maximal function and Burkholder’s square function for martingales associated
to a dyadic filtration. Similarly, singular integral operators have been traditionally mod-
eled by martingale transforms or martingale paraproducts. These last operators can be
written in terms of martingale differences and conditional expectations, so that the full
strength of probability methods applies in the analysis of their boundedness properties.
In the Euclidean setting, dyadic martingale differences decompose as a sum of Haar
functions and therefore we can obtain expansions using the classical Haar system.

In the last years dyadic operators have attracted a lot of attention related to the
so-called As-conjecture. This seeks to establish that some operators obey an L?(w) esti-
mate for every w € A, with a constant that grows linearly in the As-characteristic of w.
For the maximal function this was proved by Buckley [2]. In [27], Wittwer proved the
Ag-conjecture for Haar multipliers in one dimension. The Beurling—Ahlfors transform,
the Hilbert transform and the Riesz transforms were then considered by Petermichl
and Volberg in [24,22,23] (see also [11]) and the As-conjecture for them was shown via
the representation of these operators as averages of Haar multipliers and certain dyadic
operators called Haar shifts. Paraproducts were treated in [1], and with a different ap-
proach in [7]. The final solution to the As-conjecture for general Calderén—Zygmund
operators was obtained by Hytonen in his celebrated paper [15]. Again, a key ingredient
in the proof is that Calderén—Zygmund operators can be written as averages of dyadic
operators including Haar shift operators, dyadic paraproducts and their adjoints.

The dyadic Hilbert transform is given by

Hof(x) =Y (f.h)(hi_(x) = h1, (2)).

Ie2

Here 2 denotes some dyadic grid in R and h; is the Haar function associated with I € Z:
hy = |I|7Y/%(1;_ —1;,) where I_ and I, are the left and right dyadic children of I. The
importance of this operator comes from the fact that the classical Hilbert transform
can be obtained via averaging Hg over dyadic grids, this was shown by Petermichl [21].
That Hg is bounded on L?(R) follows easily from the orthogonality of the Haar system.
Using the standard Calderén—Zygmund decomposition one can easily obtain (see for
instance [7]) that Hg is of weak-type (1, 1) and therefore bounded on LP(R) for 1 < p < 2.
The bounds for p > 2 can be derived by duality and interpolation from the weak-type
(1,1) of the adjoint operator.

Let us consider a Borel measure y in R. One can define a Haar system in a similar
manner which is now orthonormal in L?(x). Hence, we may consider a dyadic Hilbert
transform which we momentarily denote by H/, and ask about its boundedness prop-
erties. The boundedness on L?(u) is again automatic by orthogonality. The standard
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