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We show that every finite volume hyperbolic manifold of
dimension greater than or equal to 3 is stable under rescaled
Ricci flow, i.e. that every small perturbation of the hyperbolic
metric flows back to the hyperbolic metric again. Note that

Communicated by Gang Tian

we do not need to make any decay assumptions on this
perturbation.

Keywords:
Ricci flow It will turn out that the main difficulty in the proof comes
Stability from a weak stability of the cusps which has to do with

Hyperbolic manifold
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infinitesimal cusp deformations. We will overcome this weak
stability by using a new analytical method developed by Koch
and Lamm.
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1. Introduction and statement of the result

In this paper, we will prove the following theorem

Theorem 1.1. For any complete hyperbolic manifold (M™,g) of finite volume and dimen-
ston n > 3, there is an € > 0 such that the following holds:
If go is another smooth metric on M with

(1-€)jg<go<(1+¢€)7,
then there is a solution (g¢)ic(o,00) to the rescaled Ricci flow equation
gr = —2Ricy, —2(n — 1)g¢

starting from go which exists for all time and as t — oo we have convergence gy — § in
the pointed smooth Cheeger—Gromouv sense, i.e. there is a family of diffeomorphisms W
of M such that ¥;g: — g in the smooth sense on every compact subset of M.

Moreover, € can be chosen so that it only depends on an upper volume bound on M
for n >4 resp. an upper diameter bound on the compact part My, of M for n =3 (see
Section 2.1 for more details).

Observe, that the theorem is already known in the compact case (see e.g. [26]). The
finite volume case is more general than the compact case since it allows the manifold to
have cusps, and hence to be noncompact (for a geometric description of these manifolds
see Section 2.1). A similar stability result also holds in dimension 2. However, one has
to take into account a finite dimensional deformation space of the hyperbolic structure
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