Advances in Mathematics 259 (2014) 532–556

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Isoperimetric type problems and Alexandrov–Fenchel type inequalities in the hyperbolic space

MATHEMATICS

霐

Guofang Wang^{a,*,1}, Chao Xia^{b,2}

 ^a Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg, Germany
^b Max-Planck-Institut für Mathematik in den Naturwissenschaft, Inselstr. 22, D-04103 Leipzig, Germany

A R T I C L E I N F O

Article history: Received 5 April 2013 Accepted 22 January 2014 Available online 13 April 2014 Communicated by Erwin Lutwak

MSC: 52A40 53C65 53C44

Keywords: Quermassintegral Curvature integral Isoperimetric problem Alexandrov–Fenchel inequality

ABSTRACT

In this paper, we solve various isoperimetric problems for the quermassintegrals and the curvature integrals in the hyperbolic space \mathbb{H}^n , by using quermassintegral preserving curvature flows. As a byproduct, we obtain hyperbolic Alexandrov–Fenchel inequalities.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: guofang.wang@math.uni-freiburg.de (G. Wang), chao.xia@mis.mpg.de (C. Xia).

 $^1\,$ G.W. is partly supported by SFB/TR71 "Geometric partial differential equations" of DFG.

 $^2\,$ C.X. is supported by funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement No. 267087. Part of this work was done while C.X. was visiting the mathematical institute of Albert-Ludwigs-Universität Freiburg. He would like to thank the institute for its hospitality.

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2014.01.024} 0001-8708/© 2014$ Elsevier Inc. All rights reserved.

1. Introduction

Isoperimetric type problems play an important role in mathematics. The classical isoperimetric theorem in the Euclidean space says that among all bounded domains in \mathbb{R}^n with given volume, the minimum of the area of the boundary is achieved precisely by the round balls. This can be formulated as an optimal inequality

$$\operatorname{Area}(\partial K) \ge n^{\frac{n-1}{n}} \omega_{n-1}^{\frac{1}{n}} \operatorname{Vol}(K)^{\frac{n-1}{n}}, \tag{1.1}$$

for any bounded domain $K \subset \mathbb{R}^n$, and equality holds if and only if K is a geodesic ball. Here and throughout this paper, ω_k denotes the k-th dimensional Hausdorff measure of the k-dimensional unit sphere \mathbb{S}^k , and by a bounded domain we mean a compact set with non-empty interior. When n = 2, inequality (1.1) is

$$L^2 \geqslant 4\pi A,\tag{1.2}$$

where L is the length of a closed curve γ in \mathbb{R}^2 and A is the area of the enclosed domain by γ . Inequalities (1.1) and (1.2) are the classical isoperimetric inequalities. Their general forms are the Alexandrov–Fenchel quermassintegral inequalities. A special, but interesting class of the Alexandrov–Fenchel quermassintegral establishes the relationship between the quermassintegrals or the curvature integrals:

$$\int_{\partial K} H_k \, d\mu \geqslant \omega_{n-1}^{\frac{k-l}{n-1-l}} \left(\int_{\partial K} H_l \, d\mu \right)^{\frac{n-1-k}{n-1-l}}, \quad 0 \le l < k \le n-1, \tag{1.3}$$

for any convex bounded domain $K \subset \mathbb{R}^n$ with C^2 boundary, where H_k is the *(nor-malized)* k-th mean curvature of ∂K as an embedding in \mathbb{R}^n . These inequalities have been intensively studied by many mathematicians and have many applications in differential geometry and integral geometry. See the excellent books of Burago–Zalgaller [7], Santalo [37] and Schneider [39]. Recently, the Alexandrov–Fenchel quermassintegral inequalities in \mathbb{R}^n have been extended to certain classes of non-convex domains. See for example [11,25,29].

All these above inequalities solve the problem if one geometric quantity attains its minimum or maximum at geodesic balls among a class of (smooth) bounded domains in \mathbb{R}^n with another given geometric quantity. We call such problems *isoperimetric type problems*.

It is a very natural question to ask if such isoperimetric type problems also hold in the hyperbolic space \mathbb{H}^n . We remark that in this paper \mathbb{H}^n denotes the hyperbolic space with the sectional curvature -1. One of the main motivations to study this problem comes naturally from integral geometry in \mathbb{H}^n . Another main motivation comes from the recent study of ADM mass, Gauss–Bonnet–Chern mass and quasi-local mass in asymptotically hyperbolic manifolds, see [22]. The isoperimetric problem between volume and area in \mathbb{H}^n

Download English Version:

https://daneshyari.com/en/article/4665762

Download Persian Version:

https://daneshyari.com/article/4665762

Daneshyari.com