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In this paper, we study locally projectively flat Finsler metrics
with constant flag curvature K. We prove those are totally
determined by their behaviors at the origin by solving some
nonlinear PDEs. The classifications when K = 0, K = −1
and K = 1 are given respectively in an algebraic way. Further,
we construct a new projectively flat Finsler metric with flag
curvature K = 1 determined by a Minkowski norm with
double square roots at the origin. As an application of our
main theorems, we give the classification of locally projectively
flat spherical symmetric Finsler metrics much easier than
before.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The regular case of Hilbert’s Fourth Problem is to study and characterize Finsler
metrics on an open subset in Rn whose geodesics are straight lines. Such metrics are
called locally projectively flat Finsler metrics. Riemannian metrics form a special and
important class in Finsler geometry. Beltrami’s theorem tells us that a Riemannian
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metric is locally projectively flat if and only if it is with constant sectional curvature
K = λ, which can be expressed as

Fλ =
√

|y|2 + λ(|x|2|y|2 − 〈x, y〉2)
1 + λ|x|2 , (1.1)

where y ∈ TxU ≈ Rn, U ⊂ Rn. However, it is not true in general.
Flag curvature is an analogue of sectional curvature in Finsler geometry. It is known

that there are many locally projectively flat Finsler metrics which are not of constant
flag curvature; and there are many Finsler metrics with constant flag curvature which
are not locally projectively flat. A natural problem is to characterize projectively flat
Finsler metrics with constant flag curvature. In [5,6], P. Funk classified projectively flat
Finsler metrics with constant flag curvature on convex domains in R2. The famous Funk
metric F = F (x, y) defined on unit ball Bn in Rn is locally projectively flat with flag
curvature K = −1

4 . It is given by

F =
√

(1 − |x|2)|y|2 + 〈x, y〉2
1 − |x|2 + 〈x, y〉

1 − |x|2 , (1.2)

where y ∈ TxBn ≈ Rn. In 1929, L. Berwald studied locally projectively flat Finsler
metrics, specially in the case of zero flag curvature [1,2]. He gave the equivalent equations
of such metrics and found that the key problem is to solve the following PDE:

Φxk = ΦΦyk , (1.3)

where Φ = Φ(x, y), x, y ∈ Rn. However, it is difficult to solve the above equation at that
time though he constructed a projectively flat Finsler metric with K = 0 which be called
Berwald’s metric now as follows

B =
(
√

(1 − |x|2)|y|2 + 〈x, y〉2 + 〈x, y〉)2

(1 − |x|2)2
√

(1 − |x|2)|y|2 + 〈x, y〉2
, (1.4)

where y ∈ TxBn ≈ Rn. The first locally projectively flat non-Riemannian Finsler metric
with positive flag curvature K = 1 was given by R. Bryant on S2 [3,4]. By algebraic
equations, Z. Shen gave the following expression of Bryant’s example including the higher
dimension in [10]:

F (x, y) = Im
[−〈x, y〉 + i

√
(e2iα + |x|2)|y|2 − 〈x, y〉2
e2iα + |x|2

]

=

√√
A + B
2D +

(
C
D

)2

+ C
D , (1.5)

where
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