The fractal dimensions of the spectrum of Sturm Hamiltonian

Qing-Hui Liu ${ }^{\mathrm{a}, *}$, Yan-Hui Qu^{b}, Zhi-Ying Wen ${ }^{\text {b }}$
${ }^{a}$ Dept. Computer Sci., Beijing Institute of Technology, Beijing 100081, PR China
${ }^{\text {b }}$ Dept. Math., Tsinghua Univ., Beijing 100084, PR China

A R T I C L E I N F O

Article history:

Received 14 November 2013
Accepted 20 February 2014
Available online 12 March 2014
Communicated by Kenneth Falconer

MSC:

28A78
37 C 45
81Q10

Keywords:

Sturm Hamiltonian
Fractal dimensions
Gibbs like measure
Cookie-Cutter-like

A B S T R A C T

Let $\alpha \in(0,1)$ be irrational and $\left[0 ; a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion of α. Let $H_{\alpha, V}$ be the Sturm Hamiltonian with frequency α and coupling $V, \Sigma_{\alpha, V}$ be the spectrum of $H_{\alpha, V}$. The fractal dimensions of the spectrum have been determined by Fan, Liu and Wen (2011) [8] when $\left\{a_{n}\right\}_{n \geqslant 1}$ is bounded. The present paper will treat the most difficult case, i.e., $\left\{a_{n}\right\}_{n \geqslant 1}$ is unbounded. We prove that for $V \geqslant 24$,

$$
\operatorname{dim}_{H} \Sigma_{\alpha, V}=s_{*}(V) \quad \text { and } \quad \overline{\operatorname{dim}}_{B} \Sigma_{\alpha, V}=s^{*}(V)
$$

where $s_{*}(V)$ and $s^{*}(V)$ are lower and upper pre-dimensions respectively. By this result, we determine the fractal dimensions of the spectrums for all Sturm Hamiltonians.
We also show the following results: $s_{*}(V)$ and $s^{*}(V)$ are Lipschitz continuous on any bounded interval of $[24, \infty)$; the limits $s_{*}(V) \ln V$ and $s^{*}(V) \ln V$ exist as V tends to infinity, and the limits are constants only depending on α; $s^{*}(V)=1$ if and only if $\lim \sup _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty$, which can be compared with the fact: $s_{*}(V)=1$ if and only if $\lim \inf _{n \rightarrow \infty}\left(a_{1} \cdots a_{n}\right)^{1 / n}=\infty($ Liu and Wen, 2004) [13].
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

The Sturm Hamiltonian is a discrete Schrödinger operator

$$
(H \psi)_{n}:=\psi_{n-1}+\psi_{n+1}+v_{n} \psi_{n}
$$

on $\ell^{2}(\mathbb{Z})$, where the potential $\left(v_{n}\right)_{n \in \mathbb{Z}}$ is given by

$$
\begin{equation*}
v_{n}=V \chi_{[1-\alpha, 1)}(n \alpha+\phi \bmod 1), \quad \forall n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\alpha \in(0,1)$ is irrational, and is called frequency, $V>0$ is called coupling, $\phi \in[0,1)$ is called phase. It is known that the spectrum of Sturm Hamiltonian is independent of ϕ, so we take $\phi=0$ and denote the spectrum by $\Sigma_{\alpha, V}$. We often simplify the notation $\Sigma_{\alpha, V}$ to Σ_{V} or Σ when α or V are fixed. The present paper is devoted to determine the fractal dimensions of $\Sigma_{\alpha, V}$ for all irrational α.

The most prominent model among the Sturm Hamiltonian is the Fibonacci Hamiltonian, which is given by taking α to be the golden number $\alpha_{0}:=(\sqrt{5}-1) / 2$. This model was introduced by physicists to model the quasicrystal system [11,16]. Sütö showed that the spectrum always has zero Lebesgue measure [18],

$$
L\left(\Sigma_{\alpha_{0}, V}\right)=0, \quad \text { for all } V>0
$$

Then it is natural to ask what is the fractal dimension of the spectrum. Raymond first estimated the Hausdorff dimension [17], and he showed that $\operatorname{dim}_{H} \Sigma_{\alpha_{0}, V}<1$ for $V>4$. Jitomirskaya and Last [10] showed that for any $V>0$, the spectral measure of the operator has positive Hausdorff dimension, as a consequence $\operatorname{dim}_{H} \Sigma_{\alpha_{0}, V}>0$. By using dynamical method, Damanik et al. [3] showed that if $V \geqslant 16$ then

$$
\begin{equation*}
\operatorname{dim}_{B} \Sigma_{\alpha_{0}, V}=\operatorname{dim}_{H} \Sigma_{\alpha_{0}, V} \tag{2}
\end{equation*}
$$

They also got lower and upper bounds for the dimensions. Due to these bounds they further showed that

$$
\begin{equation*}
\lim _{V \rightarrow \infty} \operatorname{dim}_{H} \Sigma_{\alpha_{0}, V} \ln V=\ln (1+\sqrt{2}) \tag{3}
\end{equation*}
$$

We remark that more than a natural question, the fractal dimensions of the spectrum are also related to the rates of propagation of the fastest part of the wavepacket (see [3] for detail).

Write $d(V)=\operatorname{dim}_{H} \Sigma_{\alpha_{0}, V}$. Cantat [2], Damanik and Gorodetski [4] showed that: $d(V) \in(0,1)$ is analytic on $(0, \infty)$. In [5], Damanik and Gorodetski further showed that $\lim _{V \downarrow 0} d(V)=1$ and the speed is linear.

Now we go back to the general Sturm Hamiltonian case. We fix an irrational $\alpha \in(0,1)$ with continued fraction expansion $\left[0 ; a_{1}, a_{2}, \ldots\right]$. Write

https://daneshyari.com/en/article/4665786

Download Persian Version:

https://daneshyari.com/article/4665786

Daneshyari.com

[^0]: * Corresponding author.

