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We show that every unitary representation of a discrete solv-
able virtually nilpotent group G is quasidiagonal. Roughly
speaking, this says that every unitary representation of G ap-
proximately decomposes as a direct sum of finite dimensional
approximate representations. In operator algebraic terms we
show that C∗(G) is strongly quasidiagonal.
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1. Introduction

Murray and von Neumann cite the study of unitary group representations as one
of four key motivations for their development of operator algebra theory [20]. The last
seventy-five years witnessed numerous intimate interactions between the theories, com-
pletely validating their motivation. The goal of this paper is to obtain yet another
connection between representation theory and operator algebras. On one hand we use
a natural approximation property of C*-algebras to obtain information about unitary
representations of discrete nilpotent groups. On the other hand we employ classic re-
sults about nilpotent groups to produce some new examples of strongly quasidiagonal
C*-algebras, and simple, nuclear quasidiagonal C*-algebras.
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A linear operator on a Hilbert space is called quasidiagonal if it is a compact pertur-
bation of a direct sum of finite rank operators. One analogously defines quasidiagonality
of a set of operators, and hence of a representation of a C*-algebra (see Definition 1.13).
Interpreting quasidiagonality locally for a unitary group representation translates to
declaring a unitary representation π : G → B(H) quasidiagonal if for every finite subset
F of G and ε > 0, there are mutually orthogonal, finite rank projections Qn ∈ B(H)
such that

max
t∈F

∥∥∥∥⊕
n

Qnπ(t)Qn − π(t)
∥∥∥∥ < ε.

Note that this implies that the function t �→ Qnπ(t)Qn is almost multiplicative on F
and that Qnπ(t)Qn ∈ B(Qn(H)) is almost unitary. In other words, π is quasidiagonal if
it locally approximately decomposes as a direct sum of finite dimensional approximate
unitary representations.

Rosenberg proved [10] that the left regular representation of a non-amenable discrete
group is not quasidiagonal (see also [6] for a quantitative version of this theorem). It
is a long-standing open question whether or not the left regular representation of every
amenable group is quasidiagonal (see [6] for recent progress and the state of the art).
Following Hadwin, we call a group strongly quasidiagonal if every unitary representation
is quasidiagonal.

There are many examples in [6] of amenable groups whose left regular representa-
tion is quasidiagonal, while the group is not strongly quasidiagonal. The commonality
between all of the examples is exponential growth; indeed it is precisely the growth
conditions that lead to the non-quasidiagonal representations. On the other hand, it is
fairly straightforward to see that every representation of an abelian group is quasidi-
agonal. Since nilpotent groups (Definition 1.14) posses a large degree of commutativity
and have polynomial growth, it was natural to consider the problem of whether or not
every nilpotent group is strongly quasidiagonal. Moreover there are representation theo-
retic simplifications present in nilpotent groups that suggest strong quasidiagonality. We
recall the relevant facts.

Due to the fact that a discrete group is Type I if and only if it is virtually abelian [26]
(a group is virtually “P” if it has a finite index “P” subgroup), to study representations
of nilpotent groups one usually looks for replacements for the dual. There are two natural
candidates for this replacement: The primitive ideal space of C∗(G), and the space of
characters on G.

An ideal of the group C*-algebra C∗(G) is called primitive if it is the kernel of some ir-
reducible representation of C∗(G). The primitive ideal space of C∗(G), denoted Prim(G),
is equipped with the hull-kernel topology. In general, Prim(G) is topologically poorly be-
haved, but Moore and Rosenberg proved [18] that if G is nilpotent and finitely generated,
then Prim(G) is T1 (i.e., all of the singleton sets are closed). Poguntke later generalized
their result with:
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