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The article is devoted to the representation theory of locally
compact infinite-dimensional group GLB of almost upper-
triangular infinite matrices over the finite field with ¢ ele-
ments. This group was defined by S.K., A.V., and Andrei
Zelevinsky in 1982 as an adequate n = oo analogue of general
linear groups GL(n, ¢). It serves as an alternative to GL(oo, g),
whose representation theory is poor.

Our most important results are the description of semifinite
unipotent traces (characters) of the group GLB via certain
probability measures on the Borel subgroup B and the con-
struction of the corresponding von Neumann factor represen-
tations of type Il.

As a main tool we use the subalgebra A(GLB) of smooth
functions in the group algebra Li(GLB). This subalgebra is
an inductive limit of the finite-dimensional group algebras
C(GL(n, q)) under parabolic embeddings.

As in other examples of the asymptotic representation theory
we discover remarkable properties of the infinite case which
does not take place for finite groups, like multiplicativity
of indecomposable characters or connections to probabilistic
concepts.

The infinite dimensional Iwahori-Hecke algebra H4(co) plays
a special role in our considerations and allows to under-
stand the deep analogy of the developed theory with the
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representation theory of infinite symmetric group S(oco) which
had been intensively studied in numerous previous papers.
© 2013 Elsevier Inc. All rights reserved.
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To the memory of Andrei Zelevinsky
0. Historical preface

My joint work with S. Kerov on the asymptotic representation theory of the matrix
groups GL(n,q) over finite field as the rank n grows to infinity, was started at the
beginning of 80s as a continuation of our papers devoted to analogous problems for
symmetric groups of growing ranks at the end of 70-th. It is a part of what I called “the
asymptotic representation theory”.

The “trivial” embedding GL(n, ¢) < GL(n + 1, ¢) does not lead to an interesting or
useful theory. However, another “true” (i.e. parabolic) embedding of the group algebras of
GL(n, q) was well-known starting from the very first papers on the representation theory
of GIL(n, q) (see [23,76,13], etc.). It was used by A. Zelevinsky and us (see [62]) to define
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