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to itself which is a colimit of representable functors and
a comonoid with respect to composition of such functors. In
this paper I set up a framework for studying the algebra of

MSC: such functors, which I call formal plethories, in the case where
16W99 E, is a Prifer ring. I show that the “logarithmic” functors
18D99 of primitives and indecomposables give linear approximations
18D20 of formal plethories by bimonoids in the 2-monoidal cate-
55525 gory of bimodules over a ring.
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1. Introduction

Let k be a commutative ring. From an algebro-geometric point of view, the category
of representable endofunctors of commutative k-algebras can be considered as affine
schemes over k£ with a structure of a k-algebra on them. Composition of such repre-
sentable endofunctors constitutes a non-symmetric monoidal structure o. A plethory is
such a representable endofunctor F' of k-algebras which is a comonoid with respect to o,
i.e. which is equipped with natural transformations F — id and F' — F o I’ such that
coassociativity and counitality conditions are satisfied. The algebra of plethories was
first studied by Tall and Wraith [36] and then extended by Borger and Wieland [10].
The aim of this paper is to extend the theory of plethories to the setting of graded formal
schemes and to study linearizations of them. The motivation for doing this comes from
topology.

Let E be a homotopy commutative ring spectrum representing a cohomology the-
ory E*. For any space X, E*(X) is naturally an algebra over the ring of coefficients F,
of E; furthermore, there is an action

E" () x E™(X) — E"(X)

by unstable operations. Here E,, denotes the mth space in the {2-spectrum associated
to E. The bigraded E,-algebra E*(E,) almost qualifies as the representing object of
a plethory, but not quite. In order for E*(E,) to have the required structure maps
(the ring structure on the spectrum of this ring must come from a coaddition and a



Download English Version:

https://daneshyari.com/en/article/4665818

Download Persian Version:

https://daneshyari.com/article/4665818

Daneshyari.com


https://daneshyari.com/en/article/4665818
https://daneshyari.com/article/4665818
https://daneshyari.com

