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The constants of Landau and Lebesgue are defined, for all
integers n � 0, in order, by

Gn =
n∑

k=0

1
16k

(2k
k

)2
and Ln =

1
2π

π∫
−π

∣∣∣∣ sin((n + 1
2 )t)

sin( 1
2 t)

∣∣∣∣ dt,

which play important roles in the theories of complex analysis
and Fourier series, respectively. Certain inequalities and
asymptotic expansions for the constants Gn and Ln have been
investigated by many authors. Here we aim at establishing
new asymptotic expansions for the constants Gn and Ln

of Landau and Lebesgue, respectively, by mainly using Bell
polynomials and the partition function.
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1. Introduction and preliminaries

The Landau constants are defined by

Gn =
n∑

k=0

1
16k

(
2k
k

)2 (
n ∈ N0 := N ∪ {0}, N := {1, 2, 3, . . .}

)
, (1.1)

which play an important role in the theory of complex analysis. More precisely, in 1913,
Landau [19] proved that if f(z) =

∑∞
k=0 akz

k is an analytic function in the unit disc
D := {z ∈ C: |z| < 1}, C being the set of complex numbers, which satisfies |f(z)| < 1
for all z ∈ D, then |

∑n
k=0 ak| � Gn (n ∈ N0) whose bounds are seen to be optimal.

The Lebesgue constants are defined by

Ln = 1
2π

π∫
−π

∣∣∣∣ sin((n + 1
2)t)

sin(1
2 t)

∣∣∣∣dt (n ∈ N0), (1.2)

which play an important role in the theory of Fourier series. More in detail, in 1906,
Lebesgue [20] proved the following result: Assume a function f is integrable on the
interval [−π, π] and Sn(f, x) is the nth partial sum of the Fourier series of f . That is,

ak = 1
π

π∫
−π

f(t) cos(kt) dt (k ∈ N0) and bk = 1
π

π∫
−π

f(t) sin(kt) dt (k ∈ N)

and

Sn(f, x) = a0

2 +
n∑

k=1

(
ak cos(kx) + bk sin(kx)

)
(n ∈ N0),

where the empty sum is (as usual, throughout this paper) understood to be nil. If
|f(x)| � 1 for all x ∈ [−π, π], then

Sn(f, x) � Ln (n ∈ N0). (1.3)

It is noted that Ln is the smallest possible constant for which the inequality (1.3) holds
true for all continuous functions f on [−π, π].

Certain inequalities and asymptotic expansions for the constants Gn and Ln have been
investigated by many authors (see, e.g., [5,6,10,16,23–27,33]). Here, in this paper, we aim
at establishing new asymptotic expansions for the constants Gn and Ln of Landau and
Lebesgue, respectively, by mainly using Bell polynomials and the partition function.

For our purpose, the following lemmas are required in the sequel.
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