

Available online at www.sciencedirect.com

ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 252 (2014) 185-203

www.elsevier.com/locate/aim

Invariant hypersurfaces of endomorphisms of projective varieties

De-Qi Zhang 1

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

Received 28 June 2011; accepted 22 October 2013

Available online 14 November 2013

Communicated by the Managing Editors of AIM

Abstract

We consider surjective endomorphisms f of degree > 1 on projective manifolds X of Picard number one and their f^{-1} -stable hypersurfaces V, and show that V is rationally chain connected. Also given is an optimal upper bound for the number of f^{-1} -stable prime divisors on (not necessarily smooth) projective varieties.

© 2013 Elsevier Inc. All rights reserved.

MSC: 14E20; 14J45; 37F10; 32H50

Keywords: Endomorphism; Projective spaces; Iteration; Complex dynamics

1. Introduction

We work over the field \mathbb{C} of complex numbers. Theorems 1.1–1.3 below are our main results. We refer to [19, Definition 2.34] for the definitions of *Kawamata log terminal* (*klt*) and *log canonical singularities*. See S.-W. Zhang [32, §1.2, §4.1] for the dynamic Manin–Mumford conjecture solved for the pair (X, f) as in the conclusion part of Theorem 1.1 below, and [5] for a related result on endomorphisms of (not necessarily projective) compact complex manifolds.

E-mail address: matzdq@nus.edu.sg.

¹ The author is partially supported by an ARF of NUS.

Theorem 1.1. Let X be a normal projective variety of dimension $n \ge 2$, V_i $(1 \le i \le s)$ prime divisors, H an ample Cartier divisor, and $f: X \to X$ an endomorphism with $\deg(f) = q^n > 1$ such that (for all i):

- (1) X has only log canonical singularities around $\bigcup V_i$;
- (2) V_i is Cartier and $V_i \equiv d_i H$ (numerically) for some $d_i > 0$; and
- (3) $f^{-1}(V_i) = V_i$.

Then $s \le n + 1$. Further, the equality s = n + 1 holds if and only if:

$$X = \mathbb{P}^n, \qquad V_i = \{X_i = 0\} \quad (1 \leqslant i \leqslant n+1)$$

(in suitable projective coordinates), and f is given by

$$f: [X_1, \dots, X_{n+1}] \to [X_1^q, \dots, X_{n+1}^q].$$

The conditions (1) and (2) in Theorem 1.1 are satisfied if X is smooth with Picard number $\rho(X) = 1$. The ampleness of V_i in Theorem 1.1 above and the related result Proposition 2.12 below (with the Cartier-ness of V_i replaced by the weaker \mathbb{Q} -Cartier-ness) is quite necessary because there are endomorphisms f of degree > 1 on toric surfaces whose boundary divisors have as many irreducible components as you like and are all stabilized by f^{-1} . The condition (1) is used to guarantee the inversion of adjunction (cf. [14]) and can be removed in dimension two (cf. [9, Theorem B], [25, Theorem 4.3.1]).

A projective variety X is rationally chain connected if every two points $x_i \in X$ are contained in a connected chain of rational curves on X. When X is smooth, X is rationally chain connected if and only if X is rationally connected, in the sense of Campana, and Kollár–Miyaoka–Mori [4,18].

The condition (1) below is satisfied if X is \mathbb{Q} -factorial with Picard number $\rho(X) = 1$, while the smoothness (or at least the mildness of singularities) of X in (3) is necessary (cf. Remark 1.8).

Theorem 1.2. ² Let X be a normal projective variety of dimension $n \ge 2$, $f: X \to X$ an endomorphism of degree > 1, $(0 \ne) V = \sum_i V_i \subset X$ a reduced divisor with $f^{-1}(V) = V$, and $H \subset X$ an ample Cartier divisor. Assume the three conditions below (for all i):

- (1) $-K_X \sim_{\mathbb{Q}} rH$ (\mathbb{Q} -linear equivalence) and $V_i \sim_{\mathbb{Q}} d_i H$ for some $r, d_i \in \mathbb{Q}$;
- (2) X has only log canonical singularities around V; and
- (3) X is further assumed to be smooth if: $V = V_1$ (i.e., V is irreducible), $K_X + V \sim_{\mathbb{Q}} 0$ and f is étale outside $V \cup f^{-1}(\operatorname{Sing} X)$.

Then X, each irreducible component V_i and the normalization of V_i are all rationally chain connected. Further, $-K_X$ is an ample \mathbb{Q} -Cartier divisor, i.e., r > 0 in (1).

A morphism
$$f: X \to X$$
 is *polarized* (by H) if $f^*H \sim gH$

 $^{^2}$ By the recent paper of A. Broustet and A. Hoering "Singularities of varieties admitting an endomorphism," arXiv:1304.4013, the condition (1) in Theorem 1.1, condition (2) in Theorem 1.2 and similar conditions in Propositions 2.1 and 2.12 are automatically satisfied if X is \mathbb{Q} -Gorenstein and has a polarized endomorphism of degree > 1.

Download English Version:

https://daneshyari.com/en/article/4665836

Download Persian Version:

https://daneshyari.com/article/4665836

<u>Daneshyari.com</u>