

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

[Advances in Mathematics 252 \(2014\) 204–226](http://dx.doi.org/10.1016/j.aim.2013.10.025)

www.elsevier.com/locate/aim

Flat connections on configuration spaces and braid groups of surfaces

Benjamin Enriquez

IRMA (CNRS), Université de Strasbourg, 7 rue René Descartes, F-67084 Strasbourg, France Received 9 December 2011; accepted 25 October 2013 Available online 16 November 2013 Communicated by Roman Bezrukavnikov

Abstract

We construct an explicit bundle with flat connection on the configuration space of *n* points on a complex curve. This enables one to recover the '1-formality' isomorphism between the Lie algebra of the prounipotent completion of the pure braid group of *n* points on a surface and an explicitly presented Lie algebra, and to extend it to a morphism from the full braid group of the surface to the semidirect product of the associated group with the symmetric group *Sn*.

© 2013 Elsevier Inc. All rights reserved.

Keywords: Braid groups of surfaces; 1-Formality isomorphisms; Prounipotent completions; Flat connections; Knizhnik–Zamolodchikov–Bernard connections

0. Introduction

One of the achievements of rational homotopy theory has been a collection of results on fundamental groups of (quasi-)Kähler manifolds, leading in particular to insight on the Lie algebras of their prounipotent completions ($[17,16,7]$; for a survey see [\[1\]\)](#page--1-0). These results are particularly explicit in the case of configuration spaces $X = \text{C}f_n(M)$ of *n* distinct points on a manifold M [\[14,10,18\].](#page--1-0) In the particular case where *M* is a compact complex curve, they were made still more explicit in [\[5\]](#page--1-0) (see also [\[13\]](#page--1-0) for the case $M = \mathbb{C}$). In these works, a 'formality' isomorphism was established between this Lie algebra, denoted Lie $\pi_1(X)$, and an explicit Lie algebra $\hat{\mathfrak{t}}_{g,n}$, where *g* is the genus of *M* ($\hat{\mathfrak{t}}_n$ when $M = \mathbb{C}$).

E-mail address: [b.enriquez@math.unistra.fr.](mailto:b.enriquez@math.unistra.fr)

^{0001-8708/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.aim.2013.10.025>

All these works take place in the framework of minimal model theory. However, alternative proofs are sometimes possible, based on explicit flat connections on *X*. Through the study of monodromy representations, such proofs allow for a deeper study of the algebra governing the formality isomorphisms, as well as for their connection to analysis and number theory.

In the case $X = \mathrm{Cf}_n(\mathbb{C})$, a construction of the formality isomorphism Lie $\pi_1(X) \simeq \hat{\mathfrak{t}}_n$, based on a particular bundle with flat connection on X , can be extracted from $[8]$. This flat connection is at the basis of the theory of associators developed there; when certain Lie algebraic data are given, it specializes to the Knizhnik–Zamolodchikov connection [\[12\].](#page--1-0) When $X = \mathrm{Cf}_n(C)$, where *C* is an elliptic curve, a bundle with flat connection over *X* was constructed in [\[6\]](#page--1-0) (see also [\[15\]\)](#page--1-0) and an isomorphism Lie $\pi_1(X) \simeq \hat{\mathfrak{t}}_{1,n}$ was similarly derived; this flat connection specializes to the elliptic KZ–Bernard connection [\[3\].](#page--1-0) The corresponding analogue of the theory of associators was later developed by the author.

The goal of the present paper is to construct a similar explicit bundle with flat connection over $X = \mathrm{Cf}_n(C)$, *C* being a curve of genus ≥ 1 , and to derive from there an alternative construction of the isomorphism of [\[5\].](#page--1-0) We first recall this isomorphism (Section 1). We then recall some basic notions about bundles and flat connections in Section [2,](#page--1-0) and we formulate our main result: the construction of a bundle P_n over *X* with a flat connection α_{KZ} [\(Theorem 3\)](#page--1-0), in Section [3.](#page--1-0) There we also show [\(Theorem 4\)](#page--1-0) how this result enables one to recover the isomorphism result from [\[5\],](#page--1-0) as well as to extend it to a morphism from the full braid group in genus *g* to $exp(\hat{\mathbf{t}}_{g,n}) \rtimes S_n$. Section [4](#page--1-0) contains the explicit construction of the connection α_{KZ} . The sequel of the paper is devoted to the proof of its flatness. Section [5](#page--1-0) is a preparation to this proof, and studies the behavior of α_{KZ} under certain simplicial homomorphisms. Section [6](#page--1-0) contains the main part of the proof, while Section [7](#page--1-0) contains the proof of some algebraic results on the Lie algebras t*g,n* which are used in the previous section. Finally, in Section [8,](#page--1-0) we relate the connection constructed in this paper to that constructed in $[6]$ in genus one.

We hope to devote future work to applications of the present work to a theory of associators in genus *g*, as well as to relation with the higher genus KZB connection [\[4\].](#page--1-0)

The author would like to thank D. Calaque and P. Etingof for collaboration in $[6]$, as well as P. Humbert and G. Massuyeau for discussions.

1. Formality results

Let $g \ge 0$ and $n > 0$ be integers. The pure braid group with *n* strands in genus *g* is defined as $P_{g,n} := \pi_1(Cf_n(S), x)$, where *S* is a compact topological surface of genus *g* without boundary, $Cf_n(S) = S^n$ − (diagonals) is the space of configurations of *n* points in *S*, and $x \in Cf_n(S)$. The corresponding braid group is $B_{g,n} = \pi_1(Cf_{[n]}(S), \{x\})$, where $Cf_{[n]}(S) = Cf_n(S)/S_n$ and $\{x\}$ is the S_n -orbit of x.

If $g > 0$ and $n \ge 0$, define $t_{g,n}$ as the C-Lie algebra with generators¹ v^i ($v \in V$, $i \in [n]$), t_{ij} $(i \neq j \in [n])$, and relations²: $v \mapsto v^i$ is linear for $i \in [n]$,

$$
[v^i, w^j] = \langle v, w \rangle t_{ij} \quad \text{for } i \neq j \in [n], v, w \in V,
$$

$$
\sum_{a=1}^g [x_a^i, y_a^i] = - \sum_{j: j \neq i} t_{ij}, \quad \forall i \in [n],
$$

¹ We set $[n] := \{1, \ldots, n\}.$

² The notation v^i does *not* stand for an *i*th power.

Download English Version:

<https://daneshyari.com/en/article/4665837>

Download Persian Version:

<https://daneshyari.com/article/4665837>

[Daneshyari.com](https://daneshyari.com/)