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Abstract

The cone-volume measure of a polytope with centroid at the origin is proved to satisfy the subspace
concentration condition. As a consequence a conjectured (a dozen years ago) fundamental sharp affine
isoperimetric inequality for the U-functional is completely established – along with its equality conditions.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Let Kn
o be the set of all convex bodies in R

n having the origin in their interiors, i.e., K ∈Kn
o is

a convex compact subset of the n-dimensional Euclidean space R
n with 0 ∈ int(K). For K ∈Kn

o

the cone-volume measure, VK , of K is a Borel measure on the unit sphere Sn−1 defined for a
Borel set ω ⊆ Sn−1 by

VK(ω) = 1

n

∫
x∈ν−1

K (ω)

〈
x, νK(x)

〉
dHn−1(x), (1.1)
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where νK : bd′ K → Sn−1 is the Gauss map of K , defined on bd′ K , the set of points of the
boundary of K having a unique outer normal, 〈x, νK(x)〉 is the standard inner product on R

n,
and Hn−1 is the (n− 1)-dimensional Hausdorff measure. In recent years, cone-volume measures
have appeared and were studied in various contexts, see, e.g., [2,4,5,9,16,17,20–22,28].

In particular, in the very recent and groundbreaking paper [5] on the logarithmic Minkowski
problem, Böröczky Jr., Lutwak, Yang and Zhang characterize the cone-volume measures of
origin-symmetric convex bodies as exactly those non-zero finite even Borel measures on Sn−1

which satisfy the subspace concentration condition. Here a finite Borel measure μ on Sn−1 is
said to satisfy the subspace concentration condition if for every subspace L ⊆R

n

μ
(
L ∩ Sn−1) � dimL

n
μ

(
Sn−1), (1.2)

and equality holds in (1.2) for a subspace L if and only if there exists a subspace L, complemen-
tary to L, so that also

μ
(
L ∩ Sn−1) = dimL

n
μ

(
Sn−1),

i.e., μ is concentrated on Sn−1 ∩ (L ∪ L).
This concentration condition is at the core of different problems in Convex Geometry; it pro-

vides not only the solution to the logarithmic Minkowski problem for origin-symmetric convex
bodies [5], but, for instance, in [4, Theorem 1.2], it was shown that the subspace concentration
condition is also equivalent to the property that a finite Borel measure has an affine isotropic
image.

Now let P ∈ Kn
o be a polytope with facets F1, . . . ,Fm, and let ai ∈ Sn−1 be the outer unit

normal of the facet Fi , 1 � i � m. For each facet we consider Ci = conv{0,Fi}, i.e., the convex
hull of Fi with the origin, or in other words, Ci is the cone/pyramid with basis Fi and apex 0.

The cone-volume measure of P is given by (cf. (1.1))

VP =
m∑

i=1

V(Ci)δai
,

where V(Ci) is the volume, i.e., n-dimensional Lebesgue measure, of Ci and δai
denotes the delta

measure concentrated on ai . Hence, P satisfies the subspace concentration condition (cf. (1.2))
if for every subspace L ⊆R

n

∑
ai∈L

V(Ci) �
dimL

n
V(P ), (1.3)

and equality holds in (1.3) for a subspace L if and only if there exists a subspace L, com-
plementary to L, so that {aj : aj /∈ L} ⊂ L. In other words, A = (A ∩ L) ∪ (A ∩ L), where
A = {a1, . . . , am}.

In general, the cone-volume measure depends on the position of the origin and not every
K ∈ Kn

o fulfills the subspace concentration condition. In order to extend results from the origin-
symmetric case, in [4, Problem 8.9] it is asked whether the cone-volume measure of convex
bodies having the centroid at the origin satisfies the subspace concentration condition and our
main result gives an affirmative answer in the case of polytopes.
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