# Cone-volume measures of polytopes 

Martin Henk ${ }^{*}$, Eva Linke ${ }^{1}$<br>Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany

Received 13 October 2013; accepted 26 November 2013
Available online 13 December 2013
Communicated by Erwin Lutwak In memory of Fiona Prohaska


#### Abstract

The cone-volume measure of a polytope with centroid at the origin is proved to satisfy the subspace concentration condition. As a consequence a conjectured (a dozen years ago) fundamental sharp affine isoperimetric inequality for the U -functional is completely established - along with its equality conditions. © 2013 Elsevier Inc. All rights reserved.


MSC: 52A40; 52B11
Keywords: Cone-volume measure; Subspace concentration condition; U-functional; Centro-affine inequalities; Log-Minkowski problem; Centroid; Polytope

## 1. Introduction

Let $\mathcal{K}_{o}^{n}$ be the set of all convex bodies in $\mathbb{R}^{n}$ having the origin in their interiors, i.e., $K \in \mathcal{K}_{o}^{n}$ is a convex compact subset of the $n$-dimensional Euclidean space $\mathbb{R}^{n}$ with $0 \in \operatorname{int}(K)$. For $K \in \mathcal{K}_{o}^{n}$ the cone-volume measure, $\mathrm{V}_{K}$, of $K$ is a Borel measure on the unit sphere $S^{n-1}$ defined for a Borel set $\omega \subseteq S^{n-1}$ by

$$
\begin{equation*}
\mathrm{V}_{K}(\omega)=\frac{1}{n} \int_{x \in v_{K}^{-1}(\omega)}\left\langle x, v_{K}(x)\right\rangle \mathrm{d} \mathcal{H}^{n-1}(x), \tag{1.1}
\end{equation*}
$$

[^0]where $\nu_{K}: \operatorname{bd}^{\prime} K \rightarrow S^{n-1}$ is the Gauss map of $K$, defined on $\mathrm{bd}^{\prime} K$, the set of points of the boundary of $K$ having a unique outer normal, $\left\langle x, v_{K}(x)\right\rangle$ is the standard inner product on $\mathbb{R}^{n}$, and $\mathcal{H}^{n-1}$ is the ( $n-1$ )-dimensional Hausdorff measure. In recent years, cone-volume measures have appeared and were studied in various contexts, see, e.g., [2,4,5,9,16,17,20-22,28].

In particular, in the very recent and groundbreaking paper [5] on the logarithmic Minkowski problem, Böröczky Jr., Lutwak, Yang and Zhang characterize the cone-volume measures of origin-symmetric convex bodies as exactly those non-zero finite even Borel measures on $S^{n-1}$ which satisfy the subspace concentration condition. Here a finite Borel measure $\mu$ on $S^{n-1}$ is said to satisfy the subspace concentration condition if for every subspace $L \subseteq \mathbb{R}^{n}$

$$
\begin{equation*}
\mu\left(L \cap S^{n-1}\right) \leqslant \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right) \tag{1.2}
\end{equation*}
$$

and equality holds in (1.2) for a subspace $L$ if and only if there exists a subspace $\bar{L}$, complementary to $L$, so that also

$$
\mu\left(\bar{L} \cap S^{n-1}\right)=\frac{\operatorname{dim} \bar{L}}{n} \mu\left(S^{n-1}\right)
$$

i.e., $\mu$ is concentrated on $S^{n-1} \cap(L \cup \bar{L})$.

This concentration condition is at the core of different problems in Convex Geometry; it provides not only the solution to the logarithmic Minkowski problem for origin-symmetric convex bodies [5], but, for instance, in [4, Theorem 1.2], it was shown that the subspace concentration condition is also equivalent to the property that a finite Borel measure has an affine isotropic image.

Now let $P \in \mathcal{K}_{o}^{n}$ be a polytope with facets $F_{1}, \ldots, F_{m}$, and let $a_{i} \in S^{n-1}$ be the outer unit normal of the facet $F_{i}, 1 \leqslant i \leqslant m$. For each facet we consider $C_{i}=\operatorname{conv}\left\{0, F_{i}\right\}$, i.e., the convex hull of $F_{i}$ with the origin, or in other words, $C_{i}$ is the cone/pyramid with basis $F_{i}$ and apex 0 .

The cone-volume measure of $P$ is given by (cf. (1.1))

$$
\mathrm{V}_{P}=\sum_{i=1}^{m} \mathrm{~V}\left(C_{i}\right) \delta_{a_{i}}
$$

where $\mathrm{V}\left(C_{i}\right)$ is the volume, i.e., $n$-dimensional Lebesgue measure, of $C_{i}$ and $\delta_{a_{i}}$ denotes the delta measure concentrated on $a_{i}$. Hence, $P$ satisfies the subspace concentration condition (cf. (1.2)) if for every subspace $L \subseteq \mathbb{R}^{n}$

$$
\begin{equation*}
\sum_{a_{i} \in L} \mathrm{~V}\left(C_{i}\right) \leqslant \frac{\operatorname{dim} L}{n} \mathrm{~V}(P) \tag{1.3}
\end{equation*}
$$

and equality holds in (1.3) for a subspace $L$ if and only if there exists a subspace $\bar{L}$, complementary to $L$, so that $\left\{a_{j}: a_{j} \notin L\right\} \subset \bar{L}$. In other words, $A=(A \cap L) \cup(A \cap \bar{L})$, where $A=\left\{a_{1}, \ldots, a_{m}\right\}$.

In general, the cone-volume measure depends on the position of the origin and not every $K \in \mathcal{K}_{o}^{n}$ fulfills the subspace concentration condition. In order to extend results from the originsymmetric case, in [4, Problem 8.9] it is asked whether the cone-volume measure of convex bodies having the centroid at the origin satisfies the subspace concentration condition and our main result gives an affirmative answer in the case of polytopes.

# https://daneshyari.com/en/article/4665897 

Download Persian Version:

## https://daneshyari.com/article/4665897

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: martin.henk @ ovgu.de (M. Henk), eva.linke@ovgu.de (E. Linke).
    ${ }^{1}$ Supported by Deutsche Forschungsgemeinschaft; He 2272/5-1.

