A geometric inequality on hypersurface in hyperbolic space

Haizhong Li ${ }^{\text {a }}$, Yong Wei ${ }^{\text {b,* }}$, Changwei Xiong ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, and Mathematical Sciences Center, Tsinghua University, 100084, Beijing, PR China
${ }^{\text {b }}$ Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, PR China

A R T I C L E I N F O

Article history:

Received 11 January 2013
Accepted 6 December 2013
Available online 25 December 2013
Communicated by Gang Tian

MSC:

53 C 44
53 C 42

Keywords:

Inverse curvature flow
Inequality
Hyperbolic space

A B S T R A C T

In this paper, we use the inverse curvature flow to prove a sharp geometric inequality on star-shaped and two-convex hypersurface in hyperbolic space.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The classical Alexandrov-Fenchel inequalities for closed convex hypersurface $\Sigma \subset \mathbb{R}^{n}$ state that

$$
\begin{equation*}
\int_{\Sigma} \sigma_{m}(\kappa) d \mu \geqslant C_{n, m}\left(\int_{\Sigma} \sigma_{m-1}(\kappa) d \mu\right)^{\frac{n-m-1}{n-m}}, \quad 1 \leqslant m \leqslant n-1 \tag{1}
\end{equation*}
$$

[^0]where $\sigma_{m}(\kappa)$ is the m-th elementary symmetric polynomial of the principal curvatures $\kappa=\left(\kappa_{1}, \ldots, \kappa_{n-1}\right)$ of Σ and $C_{n, m}$ is a universal constant. When $m=0,(1)$ is interpreted as the classical isoperimetric inequality
\[

$$
\begin{equation*}
|\Sigma|^{\frac{1}{n-1}} \geqslant C_{n} \operatorname{Vol}(\Omega)^{\frac{1}{n}} \tag{2}
\end{equation*}
$$

\]

which holds on all bounded domain $\Omega \subset \mathbb{R}^{n}$ with boundary $\Sigma=\partial \Omega$. Here $|\Sigma|$ is the area Σ and C_{n} is a constant depending only on dimension n. Inequality (1) was generalized to star-shaped and m-convex hypersurface $\Sigma \subset \mathbb{R}^{n}$ by Guan and $\mathrm{Li}[8]$ using the inverse curvature flow recently, where m-convex means that the principal curvature of Σ lies in Garding's cone

$$
\Gamma_{m}=\left\{\kappa \in \mathbb{R}^{n-1} \mid \sigma_{i}(\kappa)>0, i=1, \ldots, m\right\}
$$

Recently, Huisken [11] showed that in the case $m=1$, the assumption star-shaped can be replaced by outward-minimizing.

In this paper, we consider the hyperbolic space $\mathbb{H}^{n}=\mathbb{R}^{+} \times \mathbb{S}^{n-1}$ endowed with the metric

$$
\bar{g}=d r^{2}+\sinh ^{2} r g_{\mathbb{S}^{n-1}}
$$

where $g_{\mathbb{S}^{n-1}}$ is the standard round metric on the unit sphere \mathbb{S}^{n-1}. It's a natural question to establish some analogue inequalities of (1) for closed hypersurface in \mathbb{H}^{n}. In the case of $m=1, \sigma_{1}=\sigma_{1}(\kappa)$ is just the mean curvature H of Σ. Gallego and Solanes [6] have obtained a generalization of (1) to convex hypersurface in hyperbolic space using integral geometric methods, however, their result does not seem to be sharp.

We say a closed hypersurface $\Sigma \subset \mathbb{H}^{n}$ is star-shaped if the unit outward normal ν satisfies $\left\langle\nu, \partial_{r}\right\rangle>0$ everywhere on Σ, which is also equivalent to that Σ can be parametrized by a graph

$$
\Sigma=\left\{(r(\theta), \theta) \mid \theta \in \mathbb{S}^{n-1}\right\}
$$

for some smooth function r on \mathbb{S}^{n-1}. Denoting $\lambda(r)=\sinh r$, then $\lambda^{\prime}(r)=\cosh r$. Recently, Brendle, Hung and Wang [3] proved the following sharp inequality for star-shaped and mean convex (i.e., $H>0$) hypersurface $\Sigma \subset \mathbb{H}^{n}$:

$$
\begin{equation*}
\int_{\Sigma}\left(\lambda^{\prime} H-(n-1)\left\langle\bar{\nabla} \lambda^{\prime}, \nu\right\rangle\right) d \mu \geqslant(n-1) \omega_{n-1}^{\frac{1}{n-1}}|\Sigma|^{\frac{n-2}{n-1}} \tag{3}
\end{equation*}
$$

where $|\Sigma|$ is the area of Σ and ω_{n-1} is the area of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$. Equality holds in (3) if and only if Σ is a geodesic sphere centered at the origin. We note that inequality (3) has some applications in general relativity, see [3,14]. In [4], de Lima and Girão also claimed a related inequality for hypersurfaces in hyperbolic space.

https://daneshyari.com/en/article/4665901

Download Persian Version:

https://daneshyari.com/article/4665901

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hli@math.tsinghua.edu.cn (H. Li), wei-y09@mails.tsinghua.edu.cn (Y. Wei), xiongcw10@mails.tsinghua.edu.cn (C. Xiong).

 0001-8708/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.aim.2013.12.003

