

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A geometric inequality on hypersurface in hyperbolic space

Haizhong Li $^{\rm a},$ Yong Wei $^{\rm b,*},$ Changwei Xiong $^{\rm b}$

^a Department of Mathematical Sciences, and Mathematical Sciences Center, Tsinghua University, 100084, Beijing, PR China
^b Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, PR China

A R T I C L E I N F O

Article history: Received 11 January 2013 Accepted 6 December 2013 Available online 25 December 2013 Communicated by Gang Tian

MSC: 53C44 53C42

Keywords: Inverse curvature flow Inequality Hyperbolic space

ABSTRACT

In this paper, we use the inverse curvature flow to prove a sharp geometric inequality on star-shaped and two-convex hypersurface in hyperbolic space.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The classical Alexandrov–Fenchel inequalities for closed convex hypersurface $\varSigma\subset\mathbb{R}^n$ state that

$$\int_{\Sigma} \sigma_m(\kappa) \, d\mu \ge C_{n,m} \left(\int_{\Sigma} \sigma_{m-1}(\kappa) \, d\mu \right)^{\frac{n-m-1}{n-m}}, \quad 1 \le m \le n-1 \tag{1}$$

 $[\]ast\,$ Corresponding author.

E-mail addresses: hli@math.tsinghua.edu.cn (H. Li), wei-y09@mails.tsinghua.edu.cn (Y. Wei), xiongcw10@mails.tsinghua.edu.cn (C. Xiong).

^{0001-8708/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.aim.2013.12.003

where $\sigma_m(\kappa)$ is the *m*-th elementary symmetric polynomial of the principal curvatures $\kappa = (\kappa_1, \ldots, \kappa_{n-1})$ of Σ and $C_{n,m}$ is a universal constant. When m = 0, (1) is interpreted as the classical isoperimetric inequality

$$|\Sigma|^{\frac{1}{n-1}} \ge C_n \operatorname{Vol}(\Omega)^{\frac{1}{n}},\tag{2}$$

which holds on all bounded domain $\Omega \subset \mathbb{R}^n$ with boundary $\Sigma = \partial \Omega$. Here $|\Sigma|$ is the area Σ and C_n is a constant depending only on dimension n. Inequality (1) was generalized to star-shaped and m-convex hypersurface $\Sigma \subset \mathbb{R}^n$ by Guan and Li [8] using the inverse curvature flow recently, where m-convex means that the principal curvature of Σ lies in Garding's cone

$$\Gamma_m = \left\{ \kappa \in \mathbb{R}^{n-1} \mid \sigma_i(\kappa) > 0, \ i = 1, \dots, m \right\}.$$

Recently, Huisken [11] showed that in the case m = 1, the assumption *star-shaped* can be replaced by *outward-minimizing*.

In this paper, we consider the hyperbolic space $\mathbb{H}^n=\mathbb{R}^+\times\mathbb{S}^{n-1}$ endowed with the metric

$$\bar{g} = dr^2 + \sinh^2 r g_{\mathbb{S}^{n-1}},$$

where $g_{\mathbb{S}^{n-1}}$ is the standard round metric on the unit sphere \mathbb{S}^{n-1} . It's a natural question to establish some analogue inequalities of (1) for closed hypersurface in \mathbb{H}^n . In the case of m = 1, $\sigma_1 = \sigma_1(\kappa)$ is just the mean curvature H of Σ . Gallego and Solanes [6] have obtained a generalization of (1) to convex hypersurface in hyperbolic space using integral geometric methods, however, their result does not seem to be sharp.

We say a closed hypersurface $\Sigma \subset \mathbb{H}^n$ is star-shaped if the unit outward normal ν satisfies $\langle \nu, \partial_r \rangle > 0$ everywhere on Σ , which is also equivalent to that Σ can be parametrized by a graph

$$\varSigma = \left\{ \left(r(\theta), \theta \right) \mid \theta \in \mathbb{S}^{n-1} \right\}$$

for some smooth function r on \mathbb{S}^{n-1} . Denoting $\lambda(r) = \sinh r$, then $\lambda'(r) = \cosh r$. Recently, Brendle, Hung and Wang [3] proved the following sharp inequality for star-shaped and mean convex (i.e., H > 0) hypersurface $\Sigma \subset \mathbb{H}^n$:

$$\int_{\Sigma} \left(\lambda' H - (n-1) \left\langle \bar{\nabla} \lambda', \nu \right\rangle \right) d\mu \ge (n-1) \omega_{n-1}^{\frac{1}{n-1}} |\Sigma|^{\frac{n-2}{n-1}},\tag{3}$$

where $|\Sigma|$ is the area of Σ and ω_{n-1} is the area of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. Equality holds in (3) if and only if Σ is a geodesic sphere centered at the origin. We note that inequality (3) has some applications in general relativity, see [3,14]. In [4], de Lima and Girão also claimed a related inequality for hypersurfaces in hyperbolic space. Download English Version:

https://daneshyari.com/en/article/4665901

Download Persian Version:

https://daneshyari.com/article/4665901

Daneshyari.com