

Contents lists available at ScienceDirect

Advances in Mathematics

Analyticity of the total ancestor potential in singularity theory

Todor Milanov

Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

ARTICLE INFO

Article history: Received 13 May 2013 Accepted 9 January 2014 Available online 25 January 2014 Communicated by Tony Pantev

MSC: 14D05

14N35 17B69

Keywords: Period integrals Frobenius structure Goromov-Witten invariants Vertex operators

ABSTRACT

K. Saito's theory of primitive forms gives a natural semisimple Frobenius manifold structure on the space of miniversal deformations of an isolated singularity. On the other hand, Givental introduced the notion of a total ancestor potential for every semi-simple point of a Frobenius manifold and conjectured that in the settings of singularity theory his definition extends analytically to non-semisimple points as well. In this paper we prove Givental's conjecture by using the Eynard–Orantin recursion.

© 2014 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	218
2.	Frobenius structures in singularity theory	220
	2.1. Frobenius structure	221
	2.2. Period integrals	224
	2.3. Stationary phase asymptotic	225
3.	Symplectic loop space formalism	226
	3.1. Symplectic structure and quantization	226
	3.2. The total ancestor potential	227
	3.3. The correlator functions	228
4.	The ancestors for generic non-semisimple points	230
	4.1. Twisted representations of the local Heisenberg algebras	230

E-mail address: todor.milanov@ipmu.jp.

	4.2.	The local Eynard–Orantin recursion	232
	4.3.	Extending the recursion	233
	4.4.	Proof of Theorem 4.1	235
	4.5.	Proof of Theorem 1.1	237
Ackno	wledgn	nents	240
Refere	ences .		240

1. Introduction

The Gromov–Witten invariants of a compact algebraic manifold V are by definition a virtual count of holomorphic maps from a Riemann surface to V satisfying various incidents constraints. Although the rigorous definition of the Gromov–Witten invariants is very complicated, when it comes to computations, quite a bit of techniques were developed. One of the most exciting achievements is due to Givental who conjectured that under some technical conditions (which amount to saying that V has sufficiently many rational curves) we can reconstruct the higher genus invariants in terms of genus 0 and the higher genus Gromov–Witten invariants of the point. Givental's conjecture was proved recently by Teleman [22] and its impact on other areas of mathematics, such as integrable systems and the theory of quasi-modular forms is a subject of an ongoing investigation (see [5,17]).

The higher genus reconstruction formalism of Givental (see [10] or Section 3 bellow) is most naturally formulated in the abstract settings of the so-called *semi-simple Frobenius manifolds* (see [7] for some background on Frobenius manifolds). In the case of Gromov–Witten theory, the Frobenius structure is given on the vector space $H^*(V;\mathbb{C})$ and it is induced from the quantum cup product. More precisely, Givental defined the total ancestor potential of a semi-simple Frobenius manifold which in the case of Gromov–Witten theory coincides with a generating function of the so-called *ancestor* Gromov–Witten invariants (see [11]).

In this paper we study the total ancestor potential of the semi-simple Frobenius manifold arising in singularity theory. Let $f \in \mathcal{O}_{\mathbb{C}^{2l+1},0}$ be the germ of a holomorphic function with an isolated critical point at 0, i.e., the local algebra $H := \mathcal{O}_{\mathbb{C}^{2l+1},0}/(f_{x_0},\ldots,f_{x_{2l}})$ is a finite dimensional vector space (over \mathbb{C}). The dimension is called multiplicity of the critical point and it will be denoted by N. We fix a miniversal deformation F(t,x), $t \in B$ and a primitive form ω in the sense of K. Saito [19,21], so that B inherits a Frobenius structure (see [14,20]). Let B_{ss} be the set of points $t_0 \in B$, such that the critical values $u_1(t),\ldots,u_N(t)$ of $F(t,\cdot)$ form a coordinate system for t in a neighborhood of t_0 . In such coordinates the product and the residue pairing assume a diagonal form which means that the corresponding Frobenius algebra is semi-simple. Let $\mathbf{t} = \{t_{k,i}\}_{k=0,1,\ldots}^{i=1,\ldots,N}$ be a sequence of formal variables. For every $t \in B_{ss}$ we denote by $\mathcal{A}_t(\hbar; \mathbf{t})$ the total ancestor potential of the Frobenius structure (cf. Section 3.2). It is a formal series in $\mathbb{C}((\hbar))[\![\mathbf{t}]\!]$, whose coefficients are analytic functions in $t \in B_{ss}$. A priori the coefficients could have poles along the caustic $B \setminus B_{ss}$. Our main result is the following.

Download English Version:

https://daneshyari.com/en/article/4665915

Download Persian Version:

https://daneshyari.com/article/4665915

<u>Daneshyari.com</u>