

Contents lists available at ScienceDirect

Advances in Mathematics

Logarithmic bump conditions and the two-weight boundedness of Calderón–Zygmund operators ☆

David Cruz-Uribe a, Alexander Reznikov b, Alexander Volberg b,*

ARTICLE INFO

Article history:

Received 14 January 2012 Accepted 22 January 2014

Accepted 22 January 2014 Communicated by Charles Fefferman

MSC:

42B20

42B35

47A30

Keywords:

Calderón-Zygmund operators Carleson embedding theorem Bellman function Stopping time Bump conditions Orlicz norms

ABSTRACT

We prove that if a pair of weights (u,v) satisfies a sharp A_p -bump condition in the scale of all log bumps or certain loglog bumps, then Haar shifts map $L^p(v)$ into $L^p(u)$ with a constant quadratic in the complexity of the shift. This in turn implies the two weight boundedness for all Calderón–Zygmund operators. This gives a partial answer to a long-standing conjecture. We also give a partial result for a related conjecture for weak-type inequalities. To prove our main results we combine several different approaches to these problems; in particular we use many of the ideas developed to prove the A_2 conjecture. As a byproduct of our work we also disprove a conjecture by Muckenhoupt and Wheeden on weak-type inequalities for the Hilbert transform. This is closely related to the recent counterexamples of Reguera, Scurry and Thiele.

© 2014 Elsevier Inc. All rights reserved.

URL: http://sashavolberg.wordpress.com (A. Volberg).

^a Department of Mathematics, Trinity College, USA

^b Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

^{*} The first author is supported by the Stewart-Dorwart faculty development fund at Trinity College and by grant MTM2009-08934 from the Spanish Ministry of Science and Innovation; the third author is supported by the NSF under the grant DMS-0758552.

^{*} Corresponding author.

 $[\]label{lem:condition} \textit{E-mail addresses: } David.CruzUribe@trincoll.edu (D. Cruz-Uribe), reznikov@ymail.com (A. Reznikov), volberg@math.msu.edu (A. Volberg).$

1. Introduction

In this paper we prove several partial results related to a pair of long-standing conjectures in the theory of two-weight norm inequalities. To state the conjectures and our results we recall a few facts about Orlicz spaces; see [4, Chapter 5] for complete details. Given a Young function A, the complementary function \bar{A} is the Young function that satisfies

$$t \leqslant A^{-1}(t)\bar{A}^{-1}(t) \leqslant 2t, \quad t > 0.$$

We will say that a Young function \bar{A} satisfies the $B_{p'}$ condition, 1 , if for some <math>c > 0,

$$\int_{0}^{\infty} \frac{\bar{A}(t)}{t^{p'}} \frac{dt}{t} < \infty.$$

If A and \bar{A} are doubling (i.e., if $A(2t) \leq CA(t)$, and similarly for \bar{A}), then $\bar{A} \in B_p$ if and only if

$$\int\limits_{-\infty}^{\infty} \left(\frac{t^p}{A(t)}\right)^{p'-1} \frac{dt}{t} < \infty.$$

Remark 1. As we will see with specific examples below, if $\bar{A} \in B_{p'}$, then $\bar{A}(t) \lesssim t^{p'}$ and $A(t) \gtrsim t^p$.

Given p, 1 , let <math>A and B be Young functions such that $\bar{A} \in B_{p'}$ and $\bar{B} \in B_p$. We say that the pair of weights (u, v) satisfies an A_p bump condition with respect to A and B if

$$\sup_{Q} \left\| u^{1/p} \right\|_{A,Q} \left\| v^{-1/p} \right\|_{B,Q} < \infty, \tag{1}$$

where the supremum is taken over all cubes Q in \mathbb{R}^d , and the Luxemburg norm is defined by

$$||f||_{A,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q A(|f(x)|/\lambda) dx \leqslant 1 \right\}.$$

If (1) holds, then it is conjectured that

$$T: L^p(v) \to L^p(u). \tag{2}$$

Similarly, if the pair (u, v) satisfies the weaker condition

Download English Version:

https://daneshyari.com/en/article/4665930

Download Persian Version:

https://daneshyari.com/article/4665930

Daneshyari.com