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Abstract

Let G be a finite group and let d(G) be the minimal number of generators for G. It is well known that
d(G) = 2 for all (non-abelian) finite simple groups. We prove that d(H) � 4 for any maximal subgroup H

of a finite simple group, and that this bound is best possible.
We also investigate the random generation of maximal subgroups of simple and almost simple groups.

By applying a recent theorem of Jaikin-Zapirain and Pyber we show that the expected number of random
elements generating such a subgroup is bounded by an absolute constant.

We then apply our results to the study of permutation groups. In particular we show that if G is a finite
primitive permutation group with point stabilizer H , then d(G) − 1 � d(H) � d(G) + 4.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finite group and let d(G) be the minimal number of generators for G. We say
that G is d-generator if d(G) � d . The investigation of generators for finite simple groups has
a rich history, with numerous applications. Perhaps the most well known result in this area is

* Corresponding author.
E-mail addresses: t.burness@bristol.ac.uk (T.C. Burness), m.liebeck@imperial.ac.uk (M.W. Liebeck),

shalev@math.huji.ac.il (A. Shalev).

0001-8708/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.aim.2013.07.009

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.aim.2013.07.009
http://www.elsevier.com/locate/aim
mailto:t.burness@bristol.ac.uk
mailto:m.liebeck@imperial.ac.uk
mailto:shalev@math.huji.ac.il
http://dx.doi.org/10.1016/j.aim.2013.07.009


60 T.C. Burness et al. / Advances in Mathematics 248 (2013) 59–95

the fact that every finite simple group is 2-generator. For the alternating groups, this was first
stated in a 1901 paper of G.A. Miller [47]. In 1962 it was extended by Steinberg [54] to the
simple groups of Lie type, and post-Classification, Aschbacher and Guralnick [2] completed the
proof by analyzing the remaining sporadic groups. More generally, if G is an almost simple
group with socle T (so that T � G � Aut(T ) with T a non-abelian finite simple group) then
d(G) = max{2, d(G/T )} � 3 (see [14]).

A wide range of related problems on the generation of finite simple groups has been inves-
tigated in recent years. For instance, we may consider the abundance of generating pairs: if we
pick two elements of a finite simple group G at random, what is the probability that they gen-
erate G? In 1969 Dixon [15] proved that if G = An then this probability tends to 1 as n → ∞,
confirming an 1882 conjecture of Netto [48]. This was extended in [27,37] to all finite simple
groups, as conjectured by Dixon in [15].

Various generalizations have subsequently been studied by imposing restrictions on the orders
of the generating pairs. Here there are some interesting special cases. For example, the simple
groups that can be generated by a pair of elements of order 2 and 3 coincide with the simple
quotients of the modular group PSL2(Z) ∼= Z2 � Z3, and they have been intensively studied in
recent years (see [39,41], and also [40,53] for related results). In a different direction, in [21]
it is proved that every non-trivial element of a finite simple group belongs to a pair of gener-
ating elements, confirming a conjecture of Steinberg [54]. A more general notion of spread for
2-generator groups was introduced by Brenner and Wiegold [8], and this has been widely studied
in the context of finite almost simple groups (see [10,9,22], for example).

Our understanding of the subgroup structure of the finite simple groups has advanced greatly
in the last 30 years or so (see [30,31,36] for an overview). Indeed, almost all of the above results
require detailed information on the maximal subgroups of simple groups. The main purpose
of this paper is to investigate various generation properties of the maximal subgroups them-
selves, establishing some new and rather unexpected results. Our aim is to show that some of
the above results for simple groups can be extended, with some suitable small (and necessary)
modifications, to all their maximal subgroups. For example, just as every finite simple group is
2-generator, our main result states that any maximal subgroup H can also be generated by very
few elements.

Theorem 1. Every maximal subgroup of a finite simple group is 4-generator.

There are infinitely many examples with G simple and d(H) = 4 (see Remarks 4.5 and 5.12,
for example), so Theorem 1 is best possible. In fact this theorem follows from a more general
result, stated below, dealing also with maximal subgroups of almost simple groups.

Theorem 2. Let G be a finite almost simple group with socle G0 and let H be a maximal sub-
group of G. Then d(H ∩ G0) � 4, and also d(H) � 6.

It is likely that 4 is also the optimal bound in the more general almost simple situation.
In view of the explicit bounds obtained in Theorem 2, it is natural to investigate the proba-

bilistic generation of maximal subgroups of simple and almost simple groups, in analogy with
the aforementioned work on the simple groups themselves.

We introduce some relevant background and notation. For a finite or profinite group G and
a positive integer k let P(G,k) denote the probability that k randomly chosen elements of G

generate G (topologically, if G is infinite). A profinite group G is said to be positively finitely
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