

Available online at www.sciencedirect.com

ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 248 (2013) 495-530

www.elsevier.com/locate/aim

Spectral flow and the unbounded Kasparov product

Jens Kaad a,*, Matthias Lesch b

^a Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
^b Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Received 11 October 2011; accepted 18 August 2013

Available online 7 September 2013

Communicated by Alain Connes

Abstract

We present a fairly general construction of unbounded representatives for the interior Kasparov product. As a main tool we develop a theory of C^1 -connections on operator *-modules; we do not require any smoothness assumptions; our σ -unitality assumptions are minimal. Furthermore, we use work of Kucerovsky and our recent Local Global Principle for regular operators in Hilbert C^* -modules.

As an application we show that the Spectral Flow Theorem and more generally the index theory of Dirac-Schrödinger operators can be nicely explained in terms of the interior Kasparov product. © 2013 Elsevier Inc. All rights reserved.

MSC: primary 19K35; secondary 46H25, 58J30, 46L80

Keywords: KK-theory; Operator modules; Kasparov product; Spectral flow

Contents

		luction	
2.	Operator *-algebras		499
	2.1.	Preliminaries on operator spaces	499
	2.2.	Operator *-algebras	501
	2 3	Geometric examples of operator & algebras	501

E-mail addresses: jenskaad@hotmail.com (J. Kaad), ml@matthiaslesch.de, lesch@math.uni-bonn.de (M. Lesch). *URLs*: http://www.matthiaslesch.de, http://www.math.uni-bonn.de/people/lesch (M. Lesch).

[★] Both authors were supported by the Hausdorff Center for Mathematics, Bonn.

^{*} Corresponding author.

3.	Opera	tor *-modules
	3.1.	The standard module for $C_0^1(M)$
4.	Conne	ections on operator *-modules
	4.1.	The Graßmann connection
	4.2.	Comparison of connections
5.	Selfad	jointness and regularity of the unbounded product operator
	5.1.	Selfadjointness and regularity of $1 \otimes_{\nabla} D_2 \dots 512$
	5.2.	Selfadjointness and regularity of the product operator 515
6.	The in	sterior product of unbounded Kasparov modules
7.	Unbou	unded representatives for the interior Kasparov product
8.	Applio	cation: Dirac–Schrödinger operators on complete manifolds
	8.1.	Standing assumptions
	8.2.	Hermitian D_2 -connections
	8.3.	Dirac-Schrödinger operators
	8.4.	The index of Dirac-Schrödinger operators on complete manifolds 526
Ackno	owledg	ments
Refer	ences .	

1. Introduction

The Spectral Flow Theorem ([28], or quite recently [15]) relates the spectral flow of a family, A(x), of unbounded selfadjoint Fredholm operators to the index of the Fredholm operator $D = \frac{d}{dx} + A(x)$. D is an example of a so-called Dirac–Schrödinger operator on the complete manifold \mathbb{R} . Index theorems for such operators, at least in the special case where A(x) is a finite rank bundle morphism, were established in the 80s and 90s, e.g., [1,2] or [24, Chapter IV] and the references therein.

The family $\{A(x)\}_{x\in\mathbb{R}}$ naturally defines a class $[F_1]$ in the first K-theory group of $C_0(\mathbb{R})$, while the Dirac-operator $-i\frac{d}{dx}$ defines a class $[F_2]$ in the first K-homology group of the same C^* -algebra. It follows from KK-theory that the spectral flow of A(x) can be recovered as the Kasparov product of the classes $[F_1]$ and $[F_2]$ via the natural identification $KK(\mathbb{C},\mathbb{C})\cong\mathbb{Z}$, cf. [4, Section 18.10]. On the other hand classes in $KK(\mathbb{C},\mathbb{C})$ are represented by Fredholm operators and therefore the Spectral Flow Theorem can be rephrased in the following way: The Dirac-Schrödinger operator $D=\frac{d}{dx}+A(x)$, viewed as an unbounded $\mathbb{C}-\mathbb{C}$ Kasparov module represents the interior Kasparov product of $[F_1]\in K_1(C_0(\mathbb{R}))$ and $[F_2]\in K^1(C_0(\mathbb{R}))$.

It is tempting to generalize this pattern by replacing the real line by a complete Riemannian manifold. The family then becomes parametrized by the manifold whereas a Dirac operator (or, slightly more generally, a first order elliptic operator with bounded propagation speed) on the complete manifold naturally replaces $-i\frac{d}{dx}$. For the realization of this program it turns out that the existing theories of unbounded representatives for the KK-product, see e.g., [3,21,26], do not suffice. It is the purpose of this paper to establish an appropriate improvement of unbounded KK-theory which naturally covers Dirac-Schrödinger operators on complete manifolds.

In the paper [26] Mesland develops a framework of smooth algebras and differentiable C^* -modules equipped with smooth connections with the purpose of establishing a general formula for the unbounded KK-product. We pursue a less technical approach: Since unbounded Kasparov modules are abstractions of *first order* elliptic differential operators it is most natural to impose C^1 -conditions on both modules and connections. It turns out that the theory of operator

Download English Version:

https://daneshyari.com/en/article/4665966

Download Persian Version:

https://daneshyari.com/article/4665966

<u>Daneshyari.com</u>