

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 248 (2013) 872-894

www.elsevier.com/locate/aim

The size of quadratic *p*-adic linearization disks

Karl-Olof Lindahl¹

Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Av. Las Sophoras 173, Estación Central, Santiago, Chile

Received 11 December 2012; accepted 9 July 2013

Available online 11 September 2013

Communicated by Kenneth Falconer

Abstract

We find the exact radius of linearization disks at indifferent fixed points of quadratic maps in \mathbb{C}_p . We also show that the radius is invariant under power series perturbations. Localizing all periodic orbits of these quadratic-like maps we then show that periodic points are not the only obstruction for linearization. In so doing, we provide the first known examples in the dynamics of polynomials over \mathbb{C}_p where the boundary of the linearization disk does not contain any periodic point.

© 2013 Elsevier Inc. All rights reserved.

MSC: 32P05; 32H50; 37F50; 37B05; 37A50

Keywords: Small divisors; Linearization; p-adic numbers; Ramification; Periodic points

1. Introduction

Let p be a prime and let \mathbb{C}_p be the completion of an algebraic closure of the field of p-adic numbers \mathbb{Q}_p . We study a p-adic analogue of the Siegel center problem in complex dynamics. A power series

 $f(x) = \lambda x + \langle x^2 \rangle \in \mathbb{C}_p[[x]], \quad |\lambda| = 1, \text{ not a root of unity},$

has an irrationally indifferent fixed point at x = 0, and is said to be analytically *linearizable* at x = 0 if there exists a convergent power series solution H_f to the functional equation

 $H_f \circ f \circ H_f^{-1}(x) = \lambda x.$

E-mail address: jk.linden3@gmail.com.

0001-8708/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.aim.2013.07.020

¹ Supported by MECESUP2 (PUC-0711) and DICYT (Universidad de Santiago de Chile).

For a large class of quadratic-like maps we find the exact radius of the corresponding linearization disk about x = 0. Localizing the periodic orbits of these maps, we then show that the convergence of H_f stops before the appearance of any periodic point different from x = 0. Our starting point is Yoccoz study of quadratic Siegel disks [31]. Let α be irrational and $\{p_n/q_n\}_{n\geq 0}$ be the approximants given by its continued fraction expansion. The Brjuno series $B(\alpha)$ is defined by $B(\alpha) = \sum_{n \ge 0} \log(q_{n+1})/q_n$. Yoccoz proved that $P_{\alpha}(z) = e^{2i\pi\alpha}z + z^2 \in \mathbb{C}[z]$ is linearizable at z = 0 if and only if $B(\alpha) < \infty$. If $B(\alpha) < \infty$ and $C(\alpha)$ is the conformal radius of the Siegel disk, then there exist universal constants C_1 and C_2 such that $C_1 < B(\alpha) + \log C(\alpha) < C_2$. The lower bound is due to Yoccoz [31], and the upper bound is due to Buff and Chéritat [5]. A possible obstruction for linearization is the presence of periodic points different from zero. Indeed, Yoccoz proved that if α is irrational and $B(\alpha) = \infty$, then every neighborhood of z = 0 contains a periodic orbit of P_{α} different from z = 0. However, as shown by Pérez-Marco [23, Theorem V.4.2], in complex dynamics there exist maps having no periodic point on the boundary of a Siegel disk. Below, we present an analogue of the Yoccoz Brjuno function, $\tilde{r}(\lambda)$, that estimates the radius of *p*-adic linearization disks (Theorem A). Using the optimal bound obtained for *p*-adic quadratic maps (Theorem B), we obtain an analogue of Pérez-Marco's result on non-existence of periodic points on the boundary (Corollary C), providing the first *p*-adic examples of its kind.

Let p be a prime and denote by \mathcal{O}_p the closed unit disk in \mathbb{C}_p . For any $\lambda \in \mathbb{C}_p$ with $|\lambda| = 1$ but λ not a root of unity, we define

$$\mathcal{G}_{\lambda} := \lambda x + x^2 \mathcal{O}_p[[x]].$$

By the Non-Archimedean Siegel Theorem of Herman and Yoccoz [11], $f \in \mathcal{G}_{\lambda}$ is always linearizable at x = 0. Given $f \in \mathcal{G}_{\lambda}$, we denote by Δ_f the corresponding *linearization disk*, *i.e.* the maximal disk about the origin on which f is analytically conjugate to $T_{\lambda} : x \to \lambda x$. We denote by r(f) the exact radius of Δ_f and introduce a function $\tilde{r} = \tilde{r}(\lambda)$ that estimates r(f) from below. There is an explicit formula for $\tilde{r}(\lambda)$, to be given in formula (11) in Section 4, with the properties stated in Theorem A and B below.

Theorem A. Let $f \in \mathcal{G}_{\lambda}$, then $r(f) \ge \tilde{r}(\lambda)$.

The proof is based on estimates of the coefficients of the conjugacy function H_f and an application of the Weierstrass Preparation Theorem. As our main result, refining the estimates of H_f for quadratic maps, we obtain the exact size of quadratic linearization disks.

Theorem B. Let $p \ge 3$ and $\lambda \in \mathbb{C}_p$ be not a root of unity and put

$$P_{\lambda}(x) := \lambda x + x^2 \in \mathbb{C}_p[x], \text{ where } 1/p < |1 - \lambda| < 1.$$

Then, the linearization disk $\Delta_{P_{\lambda}}$ is the open disk $D_{r(P_{\lambda})}(0)$ where $r(P_{\lambda}) = |1 - \lambda|^{-1/p} \tilde{r}(\lambda)$.

In view of Theorem B, the general estimate $\tilde{r}(\lambda)$ is nearly optimal. The work lies in obtaining the optimal estimates of the coefficients of $H_{P_{\lambda}}$ carried out in Sections 4 and 5. To our knowledge, this is the first known case in \mathbb{C}_p where the exact linearization disk is known without having an explicit formula for the conjugacy H_f . In fact, the radius $r(P_{\lambda})$ is invariant under power series perturbations. Download English Version:

https://daneshyari.com/en/article/4665977

Download Persian Version:

https://daneshyari.com/article/4665977

Daneshyari.com