

Available online at www.sciencedirect.com

SciVerse ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 240 (2013) 24-60

www.elsevier.com/locate/aim

Plane posets, special posets, and permutations

L. Foissy

Laboratoire de Mathématiques, Université de Reims, Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France

Received 5 October 2012; accepted 5 March 2013 Available online 28 March 2013

Communicated by Michel Van den Bergh

Abstract

We study the self-dual Hopf algebra $\mathcal{H}_{S\mathcal{P}}$ of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from $\mathcal{H}_{S\mathcal{P}}$ to the Hopf algebra of free quasi-symmetric functions **FQSym** given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to **FQSym**; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomorphism between these two Hopf subalgebras is also defined, with the help of two combinatorial transformations on special posets. The restriction of the Hopf pairing of $\mathcal{H}_{S\mathcal{P}}$ to these Hopf subalgebras and others is also studied, as well as certain isometries between them. These problems are solved using duplicial and dendriform structures.

© 2013 Elsevier Inc. All rights reserved.

MSC: 06A11; 05A05; 16W30; 17A30

Keywords: Special posets; Permutations; Self-dual Hopf algebras; Duplicial algebras; Dendriform algebras

Contents

0.	Introd	uction	25
1.	Reminders on double posets		27
		Several families of double posets	
		Products and coproducts of double posets	
		Hopf pairing on double posets	
		ll families of posets	
		Special posets	

E-mail address: loic.foissy@univ-reims.fr.

^{0001-8708/\$ -} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.aim.2013.03.007

	2.2.	Heap-ordered posets	32
	2.3.	Pairing on special posets	
3.	Links with permutations		34
	3.1.	Plane poset associated to a permutation	34
	3.2.	Permutation associated to a plane poset	34
4.	A mo	rphism to FQSym	36
	4.1.	Reminders on FQSym	36
	4.2.	Linear extensions	37
	4.3.	Restriction to special plane posets	38
	4.4.	Restriction to heap-ordered forests	40
5.	More	algebraic structures on special posets	42
	5.1.	Recalls on <i>Dup–Dend</i> bialgebras	
	5.2.	Another product on special posets	42
	5.3.	Dendriform coproducts on special posets	44
	5.4.	Application to FQSym	46
6.	Dendriform structures on special plane forests		48
	6.1.	Dendriform coproducts	
	6.2.	Dendriform products on special plane forests	49
7.	Isome	etries between plane and special plane posets	51
	7.1.	Isometric Hopf isomorphisms between free Hopf algebras	51
	7.2.	A lemma on symmetric, invertible integer matrices	
	7.3.	Existence of an isometry between plane and special plane posets	56
8.	Conc	lusion	59
	Refer	ences	60

0. Introduction

The Hopf algebra of double posets is introduced in [17]. Recall that a *double poset* is a finite set with two partial orders; the set of isoclasses of double posets is given a structure of monoid, with a product called *composition* (Definition 4). The algebra of this monoid is given a coassociative coproduct, with the help of the notion of *ideal* of a double poset. We then obtain a graded, connected Hopf algebra, non commutative and non cocommutative. This Hopf algebra \mathcal{H}_{DP} is self-dual: it has a nondegenerate Hopf pairing $\langle -, - \rangle$, such that the pairing of two double posets is given by the number of *pictures* between these double posets (Definition 6); see [6] for more details on the nondegeneracy of this pairing.

Other algebraic structures are constructed on \mathcal{H}_{DP} in [6]. In particular, a second product is defined on \mathcal{H}_{DP} , making it a free 2-As Hopf algebra [13]. As a consequence, this object is closely related to operads and the theory of combinatorial Hopf algebras [14]. In particular, it contains the free 2-As algebra on one generator: this is the Hopf subalgebra \mathcal{H}_{WNP} of WN posets, see Definition 3. Another interesting Hopf subalgebra \mathcal{H}_{PP} is given by plane posets, that is to say double poset with a particular condition of (in)compatibility between the two orders (Definition 2).

We investigate in the present text the algebraic properties of the family of *special posets*, that is to say double posets such that the second order is total [17]. They generate a Hopf subalgebra of \mathcal{H}_{DP} denoted by \mathcal{H}_{SP} . For example, as explained in [6], the two partial orders of a plane poset allow to define a third, total order, so plane posets can also be considered as special posets: this defines an injective morphism of Hopf algebras from \mathcal{H}_{PP} to \mathcal{H}_{SP} . Its image is denoted by \mathcal{H}_{SPP} . Another interesting Hopf subalgebra of \mathcal{H}_{SP} is generated by the set of *ordered forests*; Download English Version:

https://daneshyari.com/en/article/4665997

Download Persian Version:

https://daneshyari.com/article/4665997

Daneshyari.com