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Abstract

For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q
associated to the form. This answers a question asked independently by Mazur and van Straten. The proof
builds on a classification of CM forms by the second author.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The question of modularity for algebraic varieties over Q has been studied in great detail in
recent years. Historically, it began with work by A. Weil on Fermat varieties [44], continued
in the context of curves by Deuring [7] and Eichler [9]. Shimura then proved that every Hecke
eigenform of weight 2 is associated to an abelian variety over Q (conf. [35, Section 7]). In the
case of rational eigenvalues, the corresponding variety is an elliptic curve.

Conversely, the Taniyama–Shimura–Weil conjecture states that every elliptic curve over Q
is modular. The celebrated proof of this conjecture by Wiles et al. [46,43,4] not only implies
Fermat’s Last Theorem, but also catalyzed many further developments in this area, notably the
proof of Serre’s conjecture by Khare and Wintenberger [21]. This implies modularity for several
classes of varieties, for instance rigid Calabi–Yau threefolds over Q (cf. [8,16]). These results
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were preceded by work by Livné [22] on modularity for two-dimensional motives with complex
multiplication (CM) that we use here, citing it as Theorem 2.

On the other hand, the problem of geometric realizations is harder for Hecke eigenforms of
weight greater than two. Deligne [6] gives a geometric construction of ℓ-adic Galois representa-
tions for Hecke eigenforms. However, the varieties involved vary greatly with the level. In this
sense, Deligne’s construction is not as uniform as one might wish (cf. Remark 2).

This paper solves the first case of higher weight where we can realize all known Hecke
eigenforms with rational eigenvalues in a single class of varieties. Conjecturally these comprise
all Hecke eigenforms in question, as stated in our main theorem:

Theorem 1. Assume the extended Riemann Hypothesis (ERH) for odd real Dirichlet characters.
Then every Hecke eigenform of weight 3 with rational eigenvalues is associated to a K3 surface
over Q.

This result answers a question asked independently by Mazur and van Straten. It builds on
the classification of CM forms with rational coefficients by the second author which we recall in
Section 3. That section also explains the dependence of Theorem 1 on the ERH. Section 2 recalls
the notion of singular K3 surfaces and Livné’s modularity result (Theorem 2). We review the
relevant known examples and obstructions in Sections 4 and 5. For every known Hecke eigenform
of weight 3 with rational eigenvalues we then exhibit an explicit singular K3 surface over Q, thus
proving Theorem 1. Our main technique to achieve this is constructing one-dimensional families
of K3 surfaces and searching for singular specializations over Q. This is explained in Section 6
and exhibited in detail for one particular family in Section 7. The paper concludes with the
remaining surfaces needed to prove Theorem 1. A summary of the proof is given in Section 9.

2. Singular K3 surfaces

A K3 surface is a smooth, projective, simply connected surface X with trivial canonical bundle
ωX = O X . The most prominent examples are smooth quartics in P3 and Kummer surfaces. Later
we will work with elliptic K3 surfaces.

Throughout this paper, modularity will refer to classical modular forms (cf. Section 3). This
classical kind of modularity is a very special property of a variety; a general K3 surface over
Q cannot be modular for several reasons (cf. the discussion before Theorem 2), though the
Langlands Program predicts a correspondence with some automorphic forms.

K3 surfaces and their moduli have been studied in great detail. We will come back to these
questions in Section 6. The only complex K3 surfaces that can be classically modular are those
that have no moduli at all. In terms of the Picard number ρ(X) = rk NS(X), the condition that
X have no moduli is that

ρ(X) = 20,

the maximum in characteristic zero. K3 surfaces with Picard number 20 are often referred to as
singular K3 surfaces. The terminology is reflected in the Shioda–Inose structure (cf. Section 4)
which relates any singular K3 surface to a product of two isogenous elliptic curves with complex
multiplication (CM), thus with singular moduli.

Our results will often be stated in terms of the discriminant d = d(X) of a singular K3
surface X , i.e. the discriminant of the intersection form on the Néron–Severi lattice, which is the
Néron–Severi group endowed with the cup-product pairing:

d = d(X) = disc (NS(X)).
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