

Available online at www.sciencedirect.com

SciVerse ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 240 (2013) 194-226

www.elsevier.com/locate/aim

Curvatures of homogeneous Randers spaces

Shaoqiang Deng^a, Zhiguang Hu^{b,*}

^a School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People's Republic of China ^b College of Mathematics, Tianjin Normal University, Tianjin 300387, People's Republic of China

> Received 8 October 2012; accepted 5 February 2013 Available online 30 March 2013

> > Communicated by Gang Tian

Abstract

We study curvatures of homogeneous Randers spaces. After deducing the coordinate-free formulas of the flag curvature and Ricci scalar of homogeneous Randers spaces, we give several applications. We first present a direct proof of the fact that a homogeneous Randers space is Ricci quadratic if and only if it is a Berwald space. We then prove that any left invariant Randers metric on a non-commutative nilpotent Lie group must have three flags whose flag curvature is positive, negative and zero, respectively. This generalizes a result of J.A. Wolf on Riemannian metrics. We prove a conjecture of J. Milnor on the characterization of central elements of a real Lie algebra, in a more generalized sense. Finally, we study homogeneous Finsler spaces of positive flag curvature and particularly prove that the only compact connected simply connected Lie group admitting a left invariant Finsler metric with positive flag curvature is SU(2).

© 2013 Elsevier Inc. All rights reserved.

MSC: 22E46; 53C30; 53C35; 53C60

Keywords: Finsler spaces; Homogeneous Randers manifolds; Flag curvature; Ricci curvature

Contents

1.	Introduction	. 195
2.	Preliminaries	. 196

^{*} Corresponding author.

E-mail addresses: dengsq@nankai.edu.cn (S. Deng), nankaitaiji@mail.nankai.edu.cn, nankaitaiji@nankai.edu.cn (Z. Hu).

	2.1.	Finsler spaces	196
	2.2.	The Chern connection	197
	2.3.	Flag curvature and Ricci scalar	198
	2.4.	Isometric submersions of Finsler spaces	200
	2.5.	Randers metrics and the navigation data	201
3.	Flag	curvature and Ricci scalar of homogeneous Randers spaces	204
	3.1.	Riemannian curvature of a Randers space in local coordinate systems	204
	3.2.	Computation of the quantities	205
	3.3.	The formulas	209
4.	Funda	amental applications	212
	4.1.	Ricci quadratic homogeneous Randers spaces	212
	4.2.	Left invariant Randers metrics on nilpotent Lie groups	214
	4.3.	A conjecture of J. Milnor	217
5.	Homo	ogeneous Finsler spaces of positive curvature	220
	5.1.	The general case	220
	5.2.	The Randers case	223
	Ackn	owledgments	225
	Refer	ences	225

1. Introduction

The main goal of this paper is to study curvatures of homogeneous Randers spaces. Our motivation is to classify homogeneous Finsler spaces of positive flag curvature. The study of positively curved manifold has been a classical and central problem in Riemannian geometry. However, till now this has only been successful in the homogeneous case. A sufficient and necessary condition for the existence of a positively curved Riemannian metric on a general manifold is still unknown, although a series of inhomogeneous Riemannian manifolds with positive sectional curvature have been constructed (see for example [2,16–19]). Nevertheless, in the homogeneous case, the problem is completely understood. In fact, by the work of M. Berger [5], Berard Bergery [3], Wallach [33] and Aloff–Wallach [1], a complete classification of (connected and simply connected) homogeneous manifolds admitting invariant Riemannian metric were achieved. More recently, Verdianni–Ziller [32] determined all the homogeneous Riemannian metrics on spheres which have positive sectional curvature.

In Finsler geometry this problem possesses the same importance. However, up to now only very little attention has been paid to this subject. In [20], the authors initiated the study of homogeneous Finsler spaces of positive flag curvature. The main result is a complete classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. It is natural to consider the same problem without the restriction in S-curvature. However, since an explicit formula of the flag curvature of homogeneous Randers spaces has not been obtained, this problem is still open.

In this paper we will continue the study of this important problem. The first part is devoted to the deduction of an explicit formula of the flag curvature of homogeneous Randers spaces as well as a formula for the Ricci scalar, without involving local coordinate systems. We then apply this formula to obtain several interesting results. We first give a direct proof of the fact that a homogeneous Randers space is Ricci quadratic if and only if it is a Berwald space. Then we generalize a result of J.A. Wolf [34] on the sectional curvature of left invariant Riemannian metrics on nilpotent Lie groups to the Randers case, namely, we prove that any left invariant

Download English Version:

https://daneshyari.com/en/article/4666002

Download Persian Version:

https://daneshyari.com/article/4666002

<u>Daneshyari.com</u>