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Abstract

We consider multipliers on spaces of real analytic functions of one variable, i.e., maps for which mono-
mials are eigenvectors. We characterize sequences of complex numbers which are sequences of eigenvalues
for some multiplier. We characterize invertible multipliers, in particular, we find which Euler differential
operators of infinite order have global analytic solutions on the real line. We present a number of examples
where our theory applies. In some cases we give algorithms for solving the respective equations. Perturba-
tion results for solvability are presented.
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1. Introduction

The aim of this paper is to find criteria of global analytic solvability in f of an Euler
differential equation:

∞
n=0

anθ
n f (t) = g(t), t ∈ R, (an)n∈N ⊂ C (1)
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where θ(h)(t) = th′(t) or a generalized q-difference functional equation

k
n=0

an f (qn t) = g(t), t, qn ∈ R, an ∈ C (2)

with g a given analytic function. The main theme behind is the notion of a (Taylor) multiplier.
We call a linear continuous operator M : A (I ) → A (I ) on the space of real analytic func-
tions A (I ), I ⊂ R open, to be a multiplier whenever every monomial is an eigenvector. The
corresponding sequence of eigenvalues (mn)n∈N is called the multiplier sequence for M . Since
polynomials are dense in A (I ) the sequence (mn)n∈N uniquely determines M but monomials do
not form a Schauder basis of A (I ) (in fact, this space has no Schauder basis at all [18]) therefore
M is not just a diagonal operator. This makes the whole theory complicated and interesting.

Apart form Euler differential operators and generalized q-difference operators (defined as left
hand side formulae in (1) and (2)) there are plenty of other interesting examples of multipliers:
for instance, various integral operators related to the Hardy averaging operator or Hadamard
multipliers. See also [15] or [16] and the literature listed there.

The main problem is just a question of surjectivity of a suitable multiplier M : A (I ) →

A (I ). We concentrate on the case where I ⊂ R is open connected (we say shortly open interval,
for instance I = R). Surjectivity of multipliers for 0 ∉ I was completely characterized in [15].
Now, we consider the challenging case of 0 ∈ I . Here surjectivity implies invertibility. Again,
invertibility for 0 ∉ I was fully characterized in [16] but for 0 ∈ I the situation is much more
complicated. The case is challenging since, for instance, the Euler differential operators are sin-
gular. Moreover, if


∞

n=0 fnzn is the Taylor series of f ∈ A (I ) at zero then


∞

n=0 fnmnzn

is the Taylor series of M( f ) at zero (see Proposition 2.1) which fully justifies the name
multiplier.

In the complex case, i.e., when the operator acts on all holomorphic functions on a given
domain containing zero, the corresponding operator is called the Hadamard multiplier [35,36].
Our case is different since the space of real analytic functions consists of germs of holomorphic
functions.

In the present paper we completely describe multiplier sequences (mn)n∈N both in the
“matricial language” (Corollary 3.1) and via interpolation properties of holomorphic functions
with a restricted growth (Theorem 4.5, Corollary 4.6). The notion of a Mellin function or a Mellin
pair plays the crucial role (see Definition 4.7). This allows to characterize completely invertible
multipliers (Corollaries 5.10 and 5.11). The result becomes striking in case of Euler differential
operators (Corollary 6.1) and we get that many perturbations of an invertible Euler differential
operators are also invertible (Corollary 6.5). A characterization of solvability of (2) is given in
Corollary 7.5.

The general results are of existential flavour. We provide also algorithmic methods for solving
quite general Euler differential equations (see Theorem 6.6) and for q-difference equations (see
Corollary 7.10). Examples from Section 7 also provide methods for constructing multipliers
with a given multiplier sequence (see especially Theorems 7.7 and 7.13) and inverses (comp.
Example 7.15).

The main tools used in the paper are the representation theorems from [15]. The paper owes
much to the ideas of Brück and Müller [8] and to the continuation of analyticity results of
Arakelyan [2]. The whole theory is developed for A (R) but then also for A (I ) where I ⊂ R is
a general open connected set containing zero.
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