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Abstract

In approximately 1915, Ramanujan recorded two identities involving doubly infinite series of Bessel
functions. The identities were brought to the mathematical public for the first time when his lost notebook
was published in 1988, and are connected with the classical, long-standing circle and divisor problems,
respectively. We provide a proof of the first identity for the first time by analytically continuing a new kind
of Dirichlet series. Delicate estimates of exponential sums are needed, and the new methods we introduce
may be of independent interest.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

On a page published with his lost notebook [13, p. 335], Ramanujan recorded two identities
involving doubly infinite series of Bessel functions. One of them is connected with the classical
Dirichlet divisor problem. The other, which is the focus of our paper, is associated with the
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equally famous circle problem. In order to state this identity, let J1(z) denote the ordinary Bessel
function of order 1 [17, p. 15, Eq. (1)], and define

F(x) =


[x], if x is not an integer,

x −
1
2
, if x is an integer,

(1.1)

where [x] is the integer part of x .

Entry 1.1. If 0 < θ < 1, x > 0, and F(x) is defined by (1.1), then
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Note that the sum on the left side is finite. The double series in (1.2) does not converge absolutely,
and it is not clear whether it is conditionally convergent or not. If the order of summation
is reversed from that given by Ramanujan in Entry 1.1, then, as proved in [4], the double
series is convergent and equality holds in (1.2). That proof crucially depends on the order of
summation, and it is doubtful that it can be adapted to prove Entry 1.1. Also, in [2], extensive
numerical calculations were effected on the double series of the second identity, in which the
terms asymptotically have the same shape as those in (1.2), and the calculations did not provide
convincing evidence that the double series is actually convergent.

When χ is a primitive character, the authors of [4] further derived an identity involving
weighted divisor sums

dχ (n) =


k|n

χ(k), (1.3)

and Dirichlet L-functions. As a corollary, they proved that
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where r2(n) denotes the number of representations of the positive integer n as a sum of two
squares, where representations with different orders of the summands or different signs of the
summands are regarded as distinct. Here, the prime ′ on the summation sign on the left-hand side
indicates that if x is a positive integer, then only 1

2r2(x) is counted.
Identifying each representation of n as a sum of two squares with a lattice point within a circle

of radius
√

x , Gauss observed that


0≤n≤x r2(n) can be approximated by πx with an error term
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