SciVerse ScienceDirect

ADVANCES IN
Mathematics

Advances in Mathematics 234 (2013) 61-84

www.elsevier.com/locate/aim

Invariant subalgebras of affine vertex algebras

Andrew R. Linshaw

Department of Mathematics, Brandeis University, United States

Received 29 March 2012; accepted 24 October 2012 Available online 16 November 2012

Communicated by David Ben-Zvi

Dedicated to my father Michael A. Linshaw, M. D., on the occasion of his 70th birthday.

Abstract

Given a finite-dimensional complex Lie algebra \mathfrak{g} equipped with a nondegenerate, symmetric, invariant bilinear form B, let $V_k(\mathfrak{g}, B)$ denote the universal affine vertex algebra associated to \mathfrak{g} and B at level k. For any reductive group G of automorphisms of $V_k(\mathfrak{g}, B)$, we show that the invariant subalgebra $V_k(\mathfrak{g}, B)^G$ is strongly finitely generated for generic values of k. This implies the existence of a new family of deformable \mathcal{W} -algebras $\mathcal{W}(\mathfrak{g}, B, G)_k$ which exist for all but finitely many values of k. © 2012 Elsevier Inc. All rights reserved.

Keywords: Invariant theory; Affine vertex algebra; Current algebra; Reductive group action; Orbifold construction; Strong finite generation; W-algebra

1. Introduction

We call a vertex algebra \mathcal{V} strongly finitely generated if there exists a finite set of generators such that the collection of iterated Wick products of the generators and their derivatives spans \mathcal{V} . Many known vertex algebras have this property, including affine, free field and lattice vertex algebras, as well as the \mathcal{W} -algebras $\mathcal{W}(\mathfrak{g}, f)_k$ associated via quantum Drinfeld–Sokolov reduction to a simple, finite-dimensional Lie algebra \mathfrak{g} and a nilpotent element $f \in \mathfrak{g}$. Strong finite generation has many important consequences, and in particular implies that both Zhu's associative algebra $A(\mathcal{V})$, and Zhu's commutative algebra $\mathcal{V}/C_2(\mathcal{V})$, are finitely generated.

E-mail address: linshaw@brandeis.edu.

In recent work, we have investigated the strong finite generation of invariant vertex algebras \mathcal{V}^G , where G is a reductive group of automorphisms of \mathcal{V} . This is a vertex algebra analogue of Hilbert's theorem on the finite generation of classical invariant rings. It is a subtle and essentially "quantum" phenomenon that is generally destroyed by passing to the classical limit before taking invariants. Often, \mathcal{V} admits a G-invariant filtration for which $gr(\mathcal{V})$ is a commutative algebra with a derivation (i.e., an abelian vertex algebra), and the classical limit $gr(\mathcal{V}^G)$ is isomorphic to $(gr(\mathcal{V}))^G$ as a commutative algebra. Unlike \mathcal{V}^G , $gr(\mathcal{V}^G)$ is generally not finitely generated as a vertex algebra, and a presentation will require both infinitely many generators and infinitely many relations.

Isolated examples of this phenomenon have been known for many years (see for example [3,6,5,8,13]), although the first general results of this kind were obtained in [18], in the case where \mathcal{V} is the $\beta\gamma$ -system $\mathcal{S}(V)$ associated to the vector space $V=\mathbb{C}^n$. The full automorphism group of $\mathcal{S}(V)$ preserving a natural conformal structure is GL_n . By a theorem of Kac–Radul [11], $\mathcal{S}(V)^{GL_n}$ is isomorphic to the vertex algebra $\mathcal{W}_{1+\infty}$ with central charge -n. In [19] we showed that $\mathcal{W}_{1+\infty,-n}$ has a minimal strong generating set consisting of n^2+2n elements, and in particular is a \mathcal{W} -algebra of type $\mathcal{W}(1,2,\ldots,n^2+2n)$. For an arbitrary reductive group $G\subset GL_n$, $\mathcal{S}(V)^G$ decomposes as a direct sum of irreducible, highest-weight $\mathcal{W}_{1+\infty,-n}$ -modules. The strong finite generation of $\mathcal{W}_{1+\infty,-n}$ implies a certain finiteness property of the modules appearing in $\mathcal{S}(V)^G$. This property, together with a classical theorem of Weyl, yields the strong finite generation of $\mathcal{S}(V)^G$. Using the same approach, we also proved in [18] that invariant subalgebras of bc-systems and $bc\beta\gamma$ -systems are strongly finitely generated.

In [20] we initiated a similar study of the invariant subalgebras of the rank n Heisenberg vertex algebra $\mathcal{H}(n)$. The full automorphism group of $\mathcal{H}(n)$ preserving a natural conformal structure is the orthogonal group O(n). Motivated by classical invariant theory, we conjectured that $\mathcal{H}(n)^{O(n)}$ is a \mathcal{W} -algebra of type $\mathcal{W}(2, 4, \ldots, n^2 + 3n)$. For n = 1, this was already known to Dong-Nagatomo [5], and we proved it for n = 2 and n = 3. We also showed that this conjecture implies the strong finite generation of $\mathcal{H}(n)^G$ for an arbitrary reductive group G; see Theorem 6.9 of [20].

In this paper, we study invariant subalgebras of the universal affine vertex algebra $V_k(\mathfrak{g}, B)$ for a finite-dimensional Lie algebra \mathfrak{g} equipped with a nondegenerate, symmetric, invariant bilinear form B. In the special case where \mathfrak{g} is simple and B is the normalized Killing form, it is customary to denote $V_k(\mathfrak{g}, B)$ by $V_k(\mathfrak{g})$. Recall that $V_k(\mathfrak{g}, B)$ has generators X^{ξ} , which are linear in $\xi \in \mathfrak{g}$, and satisfy the OPE relations

$$X^{\xi}(z)X^{\eta}(w) \sim kB(\xi,\eta)(z-w)^{-2} + X^{[\xi,\eta]}(w)(z-w)^{-1}.$$

Let G be a reductive group of automorphisms of $V_k(\mathfrak{g}, B)$ for all $k \in \mathbb{C}$. Our main result is the following.

Theorem 1.1. For any \mathfrak{g} , B, and G, $V_k(\mathfrak{g}, B)^G$ is strongly finitely generated for generic values of k, i.e., for $k \in \mathbb{C} \setminus K$ where K is at most countable.

Note that when $\mathfrak g$ is abelian and $k \neq 0$, $V_k(\mathfrak g, B)^G \cong \mathcal H(n)^G$ for $n = \dim(\mathfrak g)$, so this result both improves and generalizes our earlier study of the vertex algebras $\mathcal H(n)^G$. The proof of Theorem 1.1 is divided into three steps. The first step is to prove it in the special case where $\mathfrak g$ is abelian and G = O(n). We will show that $\mathcal H(n)^{O(n)}$ is of type $\mathcal W(2,4,\ldots,n^2+3n)$ for $n \leq 6$, and although we do not prove this conjecture in general, we will establish the strong finite generation of $\mathcal H(n)^{O(n)}$ for all n. The second step (which is a minor modification of

Download English Version:

https://daneshyari.com/en/article/4666146

Download Persian Version:

https://daneshyari.com/article/4666146

<u>Daneshyari.com</u>