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Abstract

We give a combinatorial characterization of generic minimal rigidity for planar periodic frameworks.
The characterization is a true analogue of the Maxwell–Laman Theorem from rigidity theory: it is stated in
terms of a finite combinatorial object and the conditions are checkable by polynomial time combinatorial
algorithms.

To prove our rigidity theorem we introduce and develop periodic direction networks and Z2-graded-
sparse colored graphs.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A periodic framework is an infinite planar structure, periodic with respect to a lattice
representing Z2, made of fixed-length bars connected by joints with full rotational degrees of
freedom; the allowed continuous motions are those that preserve the lengths and connectivity of
the bars, and the framework’s Z2-symmetry. A periodic framework is rigid if the only allowed
motions are Euclidean isometries, and flexible otherwise.

The forced periodicity is a key feature of this model: there are structures that are rigid with
respect to periodicity-preserving motions that are flexible if a larger class of motions is allowed.
What is not required to be preserved is also noteworthy: the lattice is allowed to change as the
framework moves.
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Formally, a periodic framework is given by a triple (G̃, ϕ, ℓ̃) where: G̃ is a simple infinite
graph; ϕ is a free Z2-action on G̃ by automorphisms such that the quotient is finite; and ℓ̃ = ( ˜ℓi j )

assigns a length to each edge of G̃.
A realization G̃(p, L) of a periodic framework (G̃, ϕ, ℓ̃) is defined to be a mapping p of the

vertex set V (G̃) into R2 and a representation Z2
→ R2 encoded by a matrix L ∈ R2×2 (with R2

here viewed as translations) such that:

• the representation is equivariant with respect to the Z2-actions on G̃ and the plane; i.e., pγ ·i =

pi + L · γ for all i ∈ V (G̃) and γ ∈ Z2.
• The specified edge lengths are preserved by p; i.e., ∥pi − p j∥ = ℓ̃i j for all edges i j ∈ E(G̃).

The reader should note that together these definitions imply that, to be realizable, an abstract
periodic framework must give the same length to each Z2-orbit of edges.

A realization G̃(p, L) is rigid if the only allowed continuous motions of p and L that preserve
the action ϕ and the edge lengths are rigid motions of the plane and flexible otherwise. If G̃(p, L)

is rigid but ceases to be so if any Z2-orbit of edges in G̃ is removed it is minimally rigid.
These definitions of periodic frameworks and rigidity are from [2]. (See Section 16 for complete
details.)

1.1. Main theorem

The topic of this paper is to determine rigidity and flexibility of periodic frameworks based
only on the combinatorics of a framework—i.e., which bars are present and not their specific
lengths. In general, this is not possible, and even testing rigidity of a finite framework seems to
be a hard problem, with the best known algorithms relying on exponential-time Gröbner basis
computations.

However, for generic periodic frameworks, we give the following combinatorial
characterization, which is analogous to the landmark Maxwell–Laman Theorem [14,8]. The
colored-Laman graphs appearing in statements of theorems are defined in Section 4; the quotient
graph is defined in Section 2, and genericity is defined precisely in Section 17 in terms of the
coordinates of the points in a realization avoiding a nowhere-dense algebraic set. In particular,
this means that the set non-generic realizations has measure zero.

Theorem A. Let (G̃, ϕ, ℓ̃) be a generic periodic framework. Then a generic realization G̃(p, L)

of (G̃, ϕ, ℓ̃) is minimally rigid if and only if its colored quotient graph (G, γ ) is colored-Laman.

Theorem A is a true combinatorial characterization of generic periodic rigidity in the plane:
(G, γ ) is a finite combinatorial object and the colored-Laman condition is checkable in
polynomial time. The specialization of Theorem A to the case where the quotient graph has
only one vertex is implied by [2, Theorem 3.12].

1.2. Examples

Because infinite periodic graphs are unwieldy to work with, we will model periodic
frameworks by colored graphs, which are finite directed graphs with elements of Z2 on the
edges. These are defined in Section 2, but we show some examples here to give intuition and
motivate Theorem A. Fig. 1(a) shows part of a periodic point set, (b) makes it more clear that it
is indeed periodic by indicating the Z2 orbits of the points; (c) indicates the vectors representing
Z2 by translations and shows several copies of the fundamental domain of the Z2-action on
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