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Abstract

Let E be a regular, strongly local Dirichlet form on L2(X, m) and d the associated intrinsic distance.
Assume that the topology induced by d coincides with the original topology on X , and that X is compact,
satisfies a doubling property and supports a weak (1, 2)-Poincaré inequality. We first discuss the (non-)
coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that
the Ricci curvature of X is bounded from below in the sense of Lott–Sturm–Villani, the following are shown
to be equivalent:

(i) the heat flow of E gives the unique gradient flow of U∞,

(ii) E satisfies the Newtonian property,

(iii) the intrinsic length structure coincides with the gradient structure.

Moreover, for the standard (resistance) Dirichlet form on the Sierpinski gasket equipped with the Kusuoka
measure, we identify the intrinsic length structure with the measurable Riemannian and the gradient
structures. We also apply the above results to the (coarse) Ricci curvatures and asymptotics of the gradient
of the heat kernel.
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1. Introduction

It is well known that on Rn , associated to the Dirichlet energy
Rn

|∇ f (x)|2dx,

there is a naturally defined heat semigroup (flow). Jordan et al. [17] and Otto [35] understood
this heat flow as a gradient flow of the Boltzmann–Shannon entropy with respect to the L2-
Wasserstein metric on the space of probability measures on Rn . Since then this has been extended
to Riemannian manifolds, Finsler manifolds, Heisenberg groups, Alexandrov spaces and metric
measure spaces; see, for example, [35,1,51,9,18,33,13,2]. The gradient flow has also attracted
considerable attention in various settings; see, for example, [1,13,51,12] and the reference
therein. In particular, the works [1,12,13] in abstract setting motivate one to extend the above
phenomenon of [17] to settings such as metric measure spaces with Ricci curvatures of Lott
et al. [49,50,29] bounded from below.

Moreover, a heat semigroup (flow) is naturally associated to any given Dirichlet form. Via
this, a notion of Ricci curvature bounded from below was introduced by Bakry and Emery [4].
Observe that the Ricci curvature of Bakry–Emery essentially depends on the differential
(gradient) structure. On the other hand, under some additional assumptions on the underlying
metric measure space, a notion of Ricci curvature bounded from below was introduced by
Lott et al. [29,49,50], purely in terms of the length structure. It is then natural to analyze the
connections between these different approaches; see [13,2] for seminal studies in this direction.
In this paper, we consider the intrinsic length structures and gradient structures of Dirichlet forms.

Let X be a locally compact, connected and separable Hausdorff space and m a nonnegative
Radon measure with support X . Let E be a regular, strongly local Dirichlet form on L2(X), Γ the
squared gradient and d the intrinsic distance induced by E . We always assume that the topology
induced by d coincides with the original topology on X .

In Section 2, we establish the coincidence of the intrinsic length structure and the gradient
structure of Dirichlet forms under a doubling property, a weak Poincaré inequality and the
Newtonian property. Indeed, we prove that if (X, d, m) satisfies the doubling property, then for
every u ∈ Lip(X), the energy measure Γ (u, u) is absolutely continuous with respect to m and

d
dm Γ (u, u) ≤ (Lip u)2 almost everywhere; see Theorem 2.1. If we further assume that (X, d, m)

supports a weak (1, p)-Poincaré inequality for some p ∈ [1, ∞) and that (X, E , m) satisfies the
Newtonian property introduced in this paper, then d

dm Γ (u, u) = (Lip u)2 almost everywhere; see
Theorem 2.2.
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