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Abstract

This article mainly concerns with the non-existence, existence, and multiplicity results for positive
solutions to the Einstein-scalar field Lichnerowicz equation on closed manifolds with a negative conformal-
scalar field invariant. This equation arises from the Hamiltonian constraint equation for the Einstein-scalar
field system in general relativity. Our analysis introduces variational techniques to the analysis of the
Hamiltonian constraint equation, especially those cases when the prescribed scalar curvature-scalar field
function may change sign. To our knowledge, such a problem remains open.
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1. Introduction

Along with the rapid development in general relativity, physicists pose many challenging
problems to mathematicians, for example, the initial value problems, the well-posedness
problems, the global stability problems, etc. Among these problems, the initial value problem
turns out to be the most interesting problem from the mathematical point of view. When solving
the initial value problems, one needs to solve the so-called constraint equations which can be
formulated via the following system of equations defined on a Riemannian manifold (M, g)
without the boundary of dimension n > 3,

Scalg — [K |2 + (tracegK)* — 2p =0,

_ — (L.D)
Vg - K — VgtracegK — J =0,

where all quantities of (1.1) involving a metric are computed with respect to g, an induced metric
of g when embedded in a spacetime (V, g), K the second fundamental form, Scalg the scalar
curvature of g, p a scalar, J a vector field on M, and T a tensor of the sources; see [6,7,9].
Since the constraint equations form an under-determined system, they are in general hard to
solve. However, it was remarked in [6] that the conformal method can be effectively applied in

the constant mean curvature setting, that is to look for the metric g of the form un%g where
g is fixed. To be precise, when the conformal method is applied in this setting, the constraint
equations (1.1) are easily transformed to the so-called Hamiltonian and momentum constraints.
In the literature, the momentum constraint is a second-order semilinear elliptic equation that can
be easily solved if we are in the constant mean curvature setting. The most difficult part is to solve
the Hamiltonian constraint which can be formulated by a simple partial differential equation,

a

Aguthu = fur '+ o, >0, (1.2)
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