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Abstract

We consider nontrivial solutions of −∆u(x) = V (x)u(x), where u ≡ 0 on the boundary of a bounded
open region D ⊂ Rn , and V (x) ∈ L∞(D). We prove a sharp relationship between ∥V ∥∞ and the measure
of D, which generalizes the well-known Faber–Krahn theorem. We also prove some geometric properties
of the zero sets of the solution of the Schrödinger equation −∆u(x) = V (x)u(x).
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

We study nontrivial solutions of the Schrödinger equation

− ∆u(x) = V (x)u(x), (1.1)

where ∆ =
n

j=1
∂2

∂2
j
, which vanish on the boundary of a bounded open region D ⊂ Rn , n ≥ 1.

We say that u is nontrivial if it does not vanish identically in D.
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We establish a sharp relationship between the potential V and the measure of D. Let B(0, 1)

denote the unit ball in Rn , and set ωn = |B(0, 1)| =
π

n
2

Γ( n
2 +1)

. Let j = j n
2 −1 be the first zero of

the Bessel function J n
2 −1(x). Our main result is:

Theorem 1.1. Suppose that u ∈ C(D) is a nontrivial solution of (1.1) in the distribution sense.
Suppose that u ≡ 0 on ∂ D, and V ∈ L∞(D). Then

|D| · ∥V ∥

n
2
∞ ≥ jnωn . (1.2)

We show below that dilations and constant multiples of

u∗(x) = |x |
1−

n
2 J n

2 −1(|x |), (1.3)

where Ja(r) is the Bessel function of the first kind, give equality in (1.2), so the constant
C = jnωn in the theorem is sharp. In the proof of this theorem, and of related ones in Section 2,
we can assume without loss of generality that u > 0 on D; if u changes sign on D, we can apply

the theorem on the subset where u > 0 instead. Note that the formula |D| · ∥V ∥

n
2
∞ is dilation-

invariant, so we may also assume that ∥V ∥∞ = 1. In [4], the authors proved (1.2), but with a
smaller constant c. When n = 2, for example, we obtained c = 4π ; the constant in (1.2) is
C = π j2 with j ∼ 2.4048.

When V (x) ≡ λ, a constant, u is an eigenfunction for the Dirichlet problem:
−∆u(x) = λu(x) x ∈ D
u ≡ 0 x ∈ ∂ D.

(1.4)

The well-known Faber–Krahn inequality (see e.g. [2]) states that, for any bounded domain D
of fixed volume |D|, the smallest possible eigenvalue of the Dirichlet problem (1.4) occurs
when D is a ball. That is, if D∗ is the ball centered at the origin with |D| = |D∗

|, and
λ1(D) is the first eigenvalue of the Dirichlet problem (1.4), then λ1(D) ≥ λ1(D∗). When
D = B(0, 1), the smallest eigenvalue of (1.4) is λ1(D) = j2, and the eigenfunctions are
constant multiples of u∗( j x), where u∗ and j are defined as in Theorem 1.1. Thus, our result
generalizes the Faber–Krahn result, with the same extremals. Another interesting generalization
of the Faber–Krahn inequality appears in [10]; assuming that ∂ D is smooth, |D| is fixed, and
v : D → Rn is bounded, the smallest possible eigenvalue of the Dirichlet problem

−∆u(x) + v.∇u = λu(x) x ∈ D
u ≡ 0 x ∈ ∂ D,

occurs when D is a ball and v is constant.
Neither our Theorem 1.1 nor the Faber–Krahn inequality applies on unbounded domains in

R2; a counterexample is given in Section 2. Our proof fails in this case mainly because it depends
on Green’s identity. However, with mild assumptions on u at infinity, both theorems hold when
D is unbounded. See Theorem 2.7. One can slightly relax the assumption that u vanishes on the
boundary, and then prove (1.2) with a slightly smaller constant; see Proposition 2.4 in Section 2.
This is a key idea in the proofs of Theorems 1.1 and 2.7.

One can easily apply Theorem 1.1 to eigenfunctions of the operator −∆− V . Such a function
satisfies −∆u(x) − V (x)u(x) = λu(x). By setting V2 = V + λ, we are back to (1.1), with a

different potential, and Theorem 1.1 implies |D| · ∥V + λ∥

n
2
∞ ≥ jnωn .
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