

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 230 (2012) 2416–2427

www.elsevier.com/locate/aim

A Faber–Krahn inequality for solutions of Schrödinger's equation

L. De Carli, S.M. Hudson*

Florida International University, Math, 11200 S.W. 8th Street, Miami, FL 33199, United States

Received 12 November 2010; accepted 16 April 2012 Available online 17 May 2012

Communicated by C. Kenig

Abstract

We consider nontrivial solutions of $-\Delta u(x) = V(x)u(x)$, where $u \equiv 0$ on the boundary of a bounded open region $D \subset \mathbb{R}^n$, and $V(x) \in L^{\infty}(D)$. We prove a sharp relationship between $||V||_{\infty}$ and the measure of D, which generalizes the well-known Faber–Krahn theorem. We also prove some geometric properties of the zero sets of the solution of the Schrödinger equation $-\Delta u(x) = V(x)u(x)$. (© 2012 Elsevier Inc. All rights reserved.

MSC: primary 35B05; secondary 26D20

Keywords: Faber-Krahn; Schrödinger; Bounded potential; Unique continuation; First eigenvalue

1. Introduction

We study nontrivial solutions of the Schrödinger equation

$$-\Delta u(x) = V(x)u(x), \tag{1.1}$$

where $\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial_j^2}$, which vanish on the boundary of a bounded open region $D \subset \mathbf{R}^n$, $n \ge 1$. We say that *u* is nontrivial if it does not vanish identically in *D*.

* Corresponding author.

E-mail addresses: decarlil@fiu.edu (L. De Carli), hudsons@fiu.edu (S.M. Hudson).

^{0001-8708/\$ -} see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.aim.2012.04.014

We establish a sharp relationship between the potential V and the measure of D. Let B(0, 1) denote the unit ball in \mathbb{R}^n , and set $\omega_n = |B(0, 1)| = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$. Let $j = j_{\frac{n}{2}-1}$ be the first zero of the Bessel function $J_{\frac{n}{2}-1}(x)$. Our main result is:

Theorem 1.1. Suppose that $u \in C(\overline{D})$ is a nontrivial solution of (1.1) in the distribution sense. Suppose that $u \equiv 0$ on ∂D , and $V \in L^{\infty}(D)$. Then

$$|D| \cdot \|V\|_{\infty}^{\frac{n}{2}} \ge j^n \omega_n. \tag{1.2}$$

We show below that dilations and constant multiples of

$$u_*(x) = |x|^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(|x|), \tag{1.3}$$

where $J_a(r)$ is the Bessel function of the first kind, give equality in (1.2), so the constant $C = j^n \omega_n$ in the theorem is sharp. In the proof of this theorem, and of related ones in Section 2, we can assume without loss of generality that u > 0 on D; if u changes sign on D, we can apply the theorem on the subset where u > 0 instead. Note that the formula $|D| \cdot ||V||_{\infty}^{\frac{n}{2}}$ is dilation-invariant, so we may also assume that $||V||_{\infty} = 1$. In [4], the authors proved (1.2), but with a smaller constant c. When n = 2, for example, we obtained $c = 4\pi$; the constant in (1.2) is $C = \pi j^2$ with $j \sim 2.4048$.

When $V(x) \equiv \lambda$, a constant, *u* is an eigenfunction for the Dirichlet problem:

$$\begin{cases} -\Delta u(x) = \lambda u(x) & x \in D\\ u \equiv 0 & x \in \partial D. \end{cases}$$
(1.4)

The well-known Faber–Krahn inequality (see e.g. [2]) states that, for any bounded domain D of fixed volume |D|, the smallest possible eigenvalue of the Dirichlet problem (1.4) occurs when D is a ball. That is, if D^* is the ball centered at the origin with $|D| = |D^*|$, and $\lambda_1(D)$ is the first eigenvalue of the Dirichlet problem (1.4), then $\lambda_1(D) \ge \lambda_1(D^*)$. When D = B(0, 1), the smallest eigenvalue of (1.4) is $\lambda_1(D) = j^2$, and the eigenfunctions are constant multiples of $u_*(jx)$, where u_* and j are defined as in Theorem 1.1. Thus, our result generalizes the Faber–Krahn result, with the same extremals. Another interesting generalization of the Faber–Krahn inequality appears in [10]; assuming that ∂D is smooth, |D| is fixed, and $v : D \to \mathbb{R}^n$ is bounded, the smallest possible eigenvalue of the Dirichlet problem

$$\begin{cases} -\Delta u(x) + v \cdot \nabla u = \lambda u(x) & x \in D \\ u \equiv 0 & x \in \partial D \end{cases}$$

occurs when D is a ball and v is constant.

Neither our Theorem 1.1 nor the Faber–Krahn inequality applies on unbounded domains in \mathbb{R}^2 ; a counterexample is given in Section 2. Our proof fails in this case mainly because it depends on Green's identity. However, with mild assumptions on *u* at infinity, both theorems hold when *D* is unbounded. See Theorem 2.7. One can slightly relax the assumption that *u* vanishes on the boundary, and then prove (1.2) with a slightly smaller constant; see Proposition 2.4 in Section 2. This is a key idea in the proofs of Theorems 1.1 and 2.7.

One can easily apply Theorem 1.1 to eigenfunctions of the operator $-\Delta - V$. Such a function satisfies $-\Delta u(x) - V(x)u(x) = \lambda u(x)$. By setting $V_2 = V + \lambda$, we are back to (1.1), with a different potential, and Theorem 1.1 implies $|D| \cdot ||V + \lambda||_{\infty}^{\frac{n}{2}} \ge j^n \omega_n$.

Download English Version:

https://daneshyari.com/en/article/4666333

Download Persian Version:

https://daneshyari.com/article/4666333

Daneshyari.com