Available online at www.sciencedirect.com

SciVerse ScienceDirect

ADVANCES IN Mathematics

Advances in Mathematics 231 (2012) 213-242

www.elsevier.com/locate/aim

Cauchy transform and Poisson's equation

David Kalaj

Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona b.b. 81000 Podgorica, Montenegro

> Received 8 August 2010; accepted 2 May 2012 Available online 31 May 2012

> > Communicated by C. Kenig

Abstract

Let $u \in W^{1,p} \cap W_0^{1,p}$, $1 \le p \le \infty$ be a solution of the Poisson equation $\Delta u = h, h \in L^p$, in the unit disk. We prove $\|\nabla u\|_{L^p} \le a_p \|h\|_{L^p}$ and $\|\partial u\|_{L^p} \le b_p \|h\|_{L^p}$ with sharp constants a_p and b_p , for p = 1, p = 2, and $p = \infty$. In addition, for p > 2, with sharp constants c_p and C_p , we show $\|\partial u\|_{L^\infty} \le c_p \|h\|_{L^p}$ and $\|\nabla u\|_{L^\infty} \le C_p \|h\|_{L^p}$. We also give an extension to smooth Jordan domains.

These problems are equivalent to determining a precise value of the L^p norm of the Cauchy transform of Dirichlet's problem.

© 2012 Elsevier Inc. All rights reserved.

MSC: primary 35J05; secondary 47G10

Keywords: Möbius transformations; Poisson equation; Newtonian potential; Cauchy transform; Bessel function

Contents

1.	Introduction	214
	1.1. Notation	214
	1.2. Background	216
	Some lemmas	
3.	L^{∞} norm of gradient	225
4.	L^p norm of Cauchy transform	228
	The Hilbert norm of Cauchy transform	
	Refinement of L^p norm	

E-mail address: davidk@t-com.me.

Acknowledgments	241
References	241

1. Introduction

1.1. Notation

By U, we mean the unit disk in the complex plane \mathbb{C} and by T its boundary. Throughout the paper Ω denotes a bounded domain in \mathbb{C} ,

$$dA(z) = dxdy \quad (z = x + iy),$$

the Lebesgue area measure in Ω and

$$d\mu(z) = \frac{1}{\pi} dx dy$$

denotes the normalized area measure in the unit disk U.

For $k \ge 0$ and $p \ge 1$, $W^{k,p}(\Omega)$ is the Banach space of k-times weak differentiable p-integrable functions. The norm in $W^{k,p}(\Omega)$ is defined by

$$||u||_{W^{k,p}} := \left(\int_{\Omega} \sum_{|\alpha| \leqslant k} |D^{\alpha}u|^p dA\right)^{1/p},$$

where $\alpha \in \mathbb{N}_0^2$. If k = 0, then $W^{k,p} = L^p$ and instead of $\|u\|_{L^p}$ we sometimes write $\|u\|_p$. Another Banach space $W_0^{k,p}(\Omega)$ arises by taking the closure of $C_0^k(\Omega)$ in $W^{k,p}(\Omega)$ (here $C_0^{k,p}(\Omega)$ is the space of k times continuously differentiable functions with compact support in Ω , [11, pp. 153–154]).

The main subject of this paper is a weak solution of Dirichlet's problem

$$\begin{cases} u_{z\bar{z}} = g(z), & z \in \Omega \\ u \in W_0^{1,p}(\Omega) \end{cases}$$
 (1.1)

where $4u_{z\bar{z}} = \Delta u$ is the Laplacian of u. This is the Poisson's equation. A weak differentiable function u defined in a domain Ω with $u \in W_0^{1,p}(\Omega)$ is a weak solution of Poisson's equation if D_1u and D_2u are locally integrable in Ω , and

$$\int_{\Omega} (D_1 u D_1 v + D_2 u D_2 v + 4g v) dA = 0,$$

for all test functions $v \in C_0^1(\Omega)$.

It is well known that for $g \in L^p(\Omega)$, $p \ge 1$, the weak solution u of Poisson's equation is given explicitly as the sum of the Newtonian potential

$$N(g) = \frac{2}{\pi} \int_{\Omega} \log|z - w| g(w) dA(w),$$

and a harmonic function h such that $h|_{\partial\Omega} + N(g)|_{\partial\Omega} \equiv u|_{\partial\Omega}$. In particular, if $\Omega = \mathbf{U}$, then the function

Download English Version:

https://daneshyari.com/en/article/4666348

Download Persian Version:

https://daneshyari.com/article/4666348

<u>Daneshyari.com</u>