Bifurcating extremal domains for the first eigenvalue of the Laplacian

Felix Schlenk ${ }^{\text {a,* }}$, Pieralberto Sicbaldi ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2009 Neuchâtel, Switzerland
${ }^{\text {b }}$ Laboratoire d'Analyse Topologie Probabilités, Université Aix-Marseille 3, Avenue de l'Escadrille Normandie Niemen, 13397 Marseille cedex 20, France

Received 29 January 2011; accepted 5 October 2011
Available online 13 October 2011
Communicated by Charles Fefferman

Abstract

We prove the existence of a smooth family of non-compact domains $\Omega_{s} \subset \mathbb{R}^{n+1}, n \geqslant 1$, bifurcating from the straight cylinder $B^{n} \times \mathbb{R}$ for which the first eigenfunction of the Laplacian with 0 Dirichlet boundary condition also has constant Neumann data at the boundary: For each $s \in(-\varepsilon, \varepsilon)$, the overdetermined system

$$
\begin{cases}\Delta u+\lambda u=0 & \text { in } \Omega_{s}, \\ u=0 & \text { on } \partial \Omega_{s}, \\ \langle\nabla u, \nu\rangle=\text { const } & \text { on } \partial \Omega_{s}\end{cases}
$$

has a bounded positive solution. The domains Ω_{s} are rotationally symmetric and periodic with respect to the \mathbb{R}-axis of the cylinder; they are of the form

$$
\Omega_{s}=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \left\lvert\,\|x\|<1+s \cos \left(\frac{2 \pi}{T_{s}} t\right)+O\left(s^{2}\right)\right.\right\}
$$

where $T_{s}=T_{0}+O(s)$ and T_{0} is a positive real number depending on n. For $n \geqslant 2$ these domains provide a smooth family of counter-examples to a conjecture of Berestycki, Caffarelli and Nirenberg. We also give rather precise upper and lower bounds for the bifurcation period T_{0}. This work improves a recent result of the second author.
© 2011 Elsevier Inc. All rights reserved.

[^0]MSC: primary 58 Jxx ; secondary $35 \mathrm{~N} 25,47 \mathrm{Jxx}$
Keywords: First eigenvalue of the Laplacian; Overdetermined system; Extremal domains; Dirichlet-to-Neumann operator

1. Introduction and main results

1.1. The problem

Let Ω be a bounded domain in \mathbb{R}^{n} with smooth boundary, and consider the Dirichlet problem

$$
\begin{cases}\Delta u+\lambda u=0 & \text { in } \Omega, \tag{1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Denote by $\lambda_{1}(\Omega)$ the smallest positive constant λ for which this system has a solution (i.e. $\lambda_{1}(\Omega)$ is the first eigenvalue of the Laplacian on Ω with 0 Dirichlet boundary condition). By the KreinRutman theorem, the eigenvalue $\lambda_{1}(\Omega)$ is simple, and the corresponding eigenfunction (that is unique up to a multiplicative constant) has constant sign on Ω, see [14, Theorem 1.2.5]. One usually takes the eigenfunction u with $u>0$ on Ω and $\int_{\Omega} u^{2}=1$. The eigenfunctions of higher eigenvalues must change sign on Ω, since they are orthogonal to the first eigenfunction. By the Faber-Krahn inequality,

$$
\begin{equation*}
\lambda_{1}(\Omega) \geqslant \lambda_{1}\left(B^{n}(\Omega)\right) \tag{2}
\end{equation*}
$$

where $B^{n}(\Omega)$ is the round ball in \mathbb{R}^{n} with the same volume as Ω. Moreover, equality holds in (2) if and only if $\Omega=B^{n}(\Omega)$, see [9] and [17]. In other words, round balls are minimizers for λ_{1} among domains of the same volume. This result can also be obtained by reasoning as follows. Consider the functional $\Omega \rightarrow \lambda_{1}(\Omega)$ for all smooth bounded domains Ω in \mathbb{R}^{n} of the same volume, say $\operatorname{Vol}(\Omega)=\alpha$. A classical result due to Garabedian and Schiffer asserts that Ω is a critical point for λ_{1} (among domains of volume α) if and only if the first eigenfunction of the Laplacian in Ω with 0 Dirichlet boundary condition has also constant Neumann data at the boundary, see [11]. In this case, we say that Ω is an extremal domain for the first eigenvalue of the Laplacian, or simply an extremal domain. Extremal domains are then characterized as the domains for which the overdetermined system

$$
\begin{cases}\Delta u+\lambda u=0 & \text { in } \Omega, \tag{3}\\ u=0 & \text { on } \partial \Omega \\ \langle\nabla u, v\rangle=\mathrm{const} & \text { on } \partial \Omega\end{cases}
$$

has a positive solution (here v is the outward unit normal vector field along $\partial \Omega$). By a classical result due to J. Serrin the only domains for which the system (3) has a positive solution are round balls, see [23]. One then checks that round balls are minimizers.

For domains with infinite volume, at first sight one cannot ask for "a domain that minimizes λ_{1} ". Indeed, with $c \Omega=\{c z \mid z \in \Omega\}$ we have

$$
\lambda_{1}(c \Omega)=c^{-2} \lambda_{1}(\Omega), \quad c>0
$$

https://daneshyari.com/en/article/4666381

Download Persian Version:

https://daneshyari.com/article/4666381

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: schlenk@unine.ch (F. Schlenk), pieralberto.sicbaldi@univ-cezanne.fr (P. Sicbaldi).

