

ADVANCES IN Mathematics

Advances in Mathematics 221 (2009) 861-881

www.elsevier.com/locate/aim

A parabolic two-phase obstacle-like equation

Henrik Shahgholian a,*,1, Nina Uraltseva b,2, Georg S. Weiss c,3

a Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden
 b St. Petersburg State University, Department of Mathematics and Mechanics, 198504 St. Petersburg, Staryi Petergof, Universitetsky Pr. 28, Russian Federation

^c Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo-to 153-8914, Japan

Received 12 February 2008; accepted 27 January 2009

Available online 20 February 2009

Communicated by Luis Caffarelli

Abstract

For the parabolic obstacle-problem-like equation

$$\Delta u - \partial_t u = \lambda_+ \chi_{\{u > 0\}} - \lambda_- \chi_{\{u < 0\}},$$

where λ_+ and λ_- are positive Lipschitz functions, we prove in arbitrary finite dimension that the free boundary $\partial\{u>0\}\cup\partial\{u<0\}$ is in a neighborhood of each "branch point" the union of two Lipschitz graphs that are continuously differentiable with respect to the space variables. The result extends the elliptic paper [Henrik Shahgholian, Nina Uraltseva, Georg S. Weiss, The two-phase membrane problem—regularity in higher dimensions, Int. Math. Res. Not. (8) (2007)] to the parabolic case. There are substantial difficulties in the parabolic case due to the fact that the time derivative of the solution is in general not a continuous function. Our result is optimal in the sense that the graphs are in general not better than Lipschitz, as shown by a counter-example.

© 2009 Elsevier Inc. All rights reserved.

MSC: primary 35R35; secondary 35J60

E-mail addresses: henriksh@math.kth.se (H. Shahgholian), uraltsev@pdmi.ras.ru (N. Uraltseva), gw@ms.u-tokyo.ac.jp (G.S. Weiss).

^{*} Corresponding author.

¹ Has been partially supported by the Swedish Research Council.

² Has been partially supported by Russian Foundation of Basic Research (grant number 08-01-00748).

³ Has been partially supported by a Grant-in-Aid for Scientific Research, Ministry of Education, Japan.

Keywords: Free boundary; Singular point; Branch point; Membrane; Obstacle problem; Regularity; Global solution; Blow-up

Contents

1.	Introduction	62
	1.1. Background and main result	62
2.	Notation	64
3.	A supremum-mean-value estimate	64
4.	Non-degeneracy and regularity of the solution	66
5.	Vanishing time derivative	67
6.	Directional monotonicity	68
7.	The set of non-vanishing gradient	69
8.	Global solutions	70
9.	Uniform closeness to h	
10.	Continuity of the time derivative	75
11.	Directional monotonicity II	75
12.	Proof of the main theorem	77
	owledgments	
Refer	ences	80

1. Introduction

1.1. Background and main result

In this paper we study the regularity of the parabolic obstacle-problem-like equation

$$\Delta u - \partial_t u = \lambda_+ \chi_{\{u > 0\}} - \lambda_- \chi_{\{u < 0\}} \quad \text{in } (0, T) \times \Omega, \tag{1.1}$$

where $T < +\infty$, $\lambda_+ > 0$, $\lambda_- > 0$ are Lipschitz functions and $\Omega \subset \mathbf{R}^n$ is a given domain. The problem arises as limiting case in the model of temperature control through the interior described in [4, 2.3.2] as $h_1, h_2 \to 0$.

We are interested in the regularity of the free boundary $\partial\{u>0\}\cup\partial\{u<0\}$. As the one-phase case (i.e. the case of a non-negative or non-positive solution) is covered by classical results, and regularity of the set $\{u=0\}\cap\{\nabla u\neq0\}$ can be obtained via the implicit function theorem (see Section 7 for higher regularity), the research focuses on the study of $\partial\{u>0\}\cap\partial\{u<0\}\cap\{\nabla u=0\}$.

In the stationary case—the two-phase membrane problem—the authors proved ([12] and [11]) that the free boundary $\partial\{u>0\}\cup\partial\{u<0\}$ is in a neighborhood of each branch point, i.e. a point in the set $\Omega\cap\partial\{u>0\}\cap\partial\{u<0\}\cap\{\nabla u=0\}$, the union of (at most) two C^1 -graphs. Note that the definition of "branch point" does not necessarily imply a bifurcation as that in Fig. 1. We formulate the main result in this paper.

Download English Version:

https://daneshyari.com/en/article/4667128

Download Persian Version:

https://daneshyari.com/article/4667128

<u>Daneshyari.com</u>