

ADVANCES IN Mathematics

Advances in Mathematics 215 (2007) 153-219

www.elsevier.com/locate/aim

Configurations in abelian categories. III. Stability conditions and identities

Dominic Joyce

The Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, UK
Received 27 January 2006; accepted 4 April 2007
Available online 21 April 2007
Communicated by Michael J. Hopkins

Abstract

This is the third in a series on *configurations* in an abelian category \mathcal{A} . Given a finite poset (I, \preccurlyeq) , an (I, \preccurlyeq) -configuration (σ, ι, π) is a finite collection of objects $\sigma(J)$ and morphisms $\iota(J, K)$ or $\pi(J, K) : \sigma(J) \to \sigma(K)$ in \mathcal{A} satisfying some axioms, where J, K are subsets of I. Configurations describe how an object X in \mathcal{A} decomposes into subobjects.

The first paper defined configurations and studied moduli spaces of configurations in \mathcal{A} , using the theory of Artin stacks. It showed well-behaved moduli stacks $\mathfrak{Obj}_{\mathcal{A}}, \mathfrak{M}(I, \preccurlyeq)_{\mathcal{A}}$ of objects and configurations in \mathcal{A} exist when \mathcal{A} is the abelian category $\operatorname{coh}(P)$ of coherent sheaves on a projective scheme P, or $\operatorname{mod-}\mathbb{K} Q$ of representations of a quiver Q. The second studied algebras of *constructible functions* and *stack functions* on $\mathfrak{Obj}_{\mathcal{A}}$.

This paper introduces (*weak*) *stability conditions* (τ, T, \leqslant) on \mathcal{A} . We show the moduli spaces $\mathrm{Obj}_{ss}^{\alpha}$, $\mathrm{Obj}_{st}^{\alpha}(\tau)$ of τ -semistable, indecomposable τ -semistable and τ -stable objects in class α are *constructible sets* in $\mathfrak{Obj}_{\mathcal{A}}$, and some associated configuration moduli spaces \mathcal{M}_{ss} , \mathcal{M}_{si} , \mathcal{M}_{st} , \mathcal{M}_{ss}^{b} , \mathcal{M}_{si}^{b} , $\mathcal{M}_{st}^{b}(I, \preccurlyeq, \kappa, \tau)_{\mathcal{A}}$ constructible in $\mathfrak{M}(I, \preccurlyeq)_{\mathcal{A}}$, so their characteristic functions δ_{ss}^{α} , δ_{st}^{α} , $\delta_{st}^{\alpha}(\tau)$ and δ_{ss} , ..., $\delta_{st}^{b}(I, \preccurlyeq, \kappa, \tau)$ are constructible.

We prove many identities relating these constructible functions, and their stack function analogues, under pushforwards. We introduce interesting algebras \mathcal{H}^{pa}_{τ} , \mathcal{H}^{to}_{τ} , $\overline{\mathcal{H}}^{pa}_{\tau}$, $\overline{\mathcal{H}}^{to}_{\tau}$ of constructible and stack functions, and study their structure. In the fourth paper we show \mathcal{H}^{pa}_{τ} , ..., $\overline{\mathcal{H}}^{to}_{\tau}$ are independent of (τ, T, \leqslant) , and construct *invariants* of \mathcal{A} , (τ, T, \leqslant) .

© 2007 Elsevier Inc. All rights reserved.

E-mail address: joyce@maths.ox.ac.uk. *URL:* http://www.maths.ox.ac.uk/~joyce.

Keywords: Configuration; Abelian category; Stability condition; Moduli space; Artin stack; Constructible function

1. Introduction

This is the third in a series of papers [9–11] on *configurations*. Given an abelian category \mathcal{A} and a finite partially ordered set (poset) (I, \preccurlyeq) , we define an (I, \preccurlyeq) -configuration (σ, ι, π) in \mathcal{A} to be a collection of objects $\sigma(J)$ and morphisms $\iota(J, K)$ or $\pi(J, K) : \sigma(J) \to \sigma(K)$ in \mathcal{A} satisfying certain axioms, for $J, K \subseteq I$.

The first paper [9] defined configurations, developed their basic properties, and studied moduli spaces of configurations in \mathcal{A} , using the theory of Artin stacks. It proved well-behaved moduli stacks $\mathfrak{Dbj}_{\mathcal{A}}, \mathfrak{M}(I, \preccurlyeq)_{\mathcal{A}}$ of objects and configurations exist when \mathcal{A} is the abelian category $\operatorname{coh}(P)$ of coherent sheaves on a projective \mathbb{K} -scheme P, or $\operatorname{mod-}\mathbb{K}Q$ of representations of a quiver Q. The second [10] defined and studied infinite-dimensional algebras of *constructible functions* and *stack functions* on $\mathfrak{Dbj}_{\mathcal{A}}$, motivated by *Ringel-Hall algebras*.

Configurations are a tool for describing how an object X in A decomposes into subobjects. They are especially useful for studying *stability conditions* on A, which are the subject of this paper. Given a stability condition (τ, T, \leq) on A, objects X in A are called τ -semistable, τ -stable or τ -unstable according to whether subobjects $S \subset X$ with $S \neq 0$, X have $\tau([S]) \leq \tau([X])$, $\tau([S]) < \tau([X])$, or $\tau([S]) > \tau([X])$. Examples of stability conditions include slope functions, and Gieseker stability of coherent sheaves.

We also define weak stability conditions, which include μ -stability and purity for coherent sheaves. When (τ, T, \leqslant) is a weak stability condition each $X \in \mathcal{A}$ has a unique Harder–Narasimhan filtration by subobjects $0 = A_0 \subset \cdots \subset A_n = X$ whose factors $S_k = A_k/A_{k-1}$ are τ -semistable with $\tau([S_1]) > \cdots > \tau([S_n])$. If (τ, T, \leqslant) is also a stability condition each τ -semistable X has a (nonunique) filtration with (unique) τ -stable factors S_k with $\tau([S_k]) = \tau([X])$. Thus, τ -stability is well-behaved for stability conditions but badly behaved for weak stability conditions, though τ -semistability is well-behaved for both.

We form moduli spaces $\operatorname{Obj}_{ss}^{\alpha}$, $\operatorname{Obj}_{si}^{\alpha}$, $\operatorname{Obj}_{st}^{\alpha}(\tau)$ of τ -semistable, τ -semistable-indecomposable and τ -stable objects in class α in $K(\mathcal{A})$, and moduli spaces \mathcal{M}_{ss} , \mathcal{M}_{si} , \mathcal{M}_{st} , \mathcal{M}_{ss}^{b} , \mathcal{M}_{si}^{b} , \mathcal{M}_{st}^{b} , \mathcal{M}_{st}^{b} , \mathcal{M}_{ss}^{b} , \mathcal{M}_{si}^{b} , \mathcal{M}_{st}^{b} , \mathcal{M}_{ss}^{b} , \mathcal{M}_{si}^{b} , $\mathcal{M}_$

This has a number of ramifications. Firstly, our approach is helpful for comparing moduli spaces, and especially for understanding how $\operatorname{Obj}_{ss}^{\alpha}(\tau)$ changes when we vary (τ, T, \leqslant) , as we are not comparing two different varieties, but two subsets of the same stack $\mathfrak{Obj}_{\mathcal{A}}$. Secondly, $\operatorname{Obj}_{ss}^{\alpha}(\tau)$ is a set of isomorphism classes, not of S-equivalence classes. This is better for studying the family of ways a τ -semistable X may be broken into τ -stable factors. But it means $\operatorname{Obj}_{ss}^{\alpha}(\tau)$ is not a well-behaved topological space, as it may not be Hausdorff, for instance. Because of this, in [11] we focus on 'motivic' invariants of constructible sets such as Euler characteristics and virtual Poincaré polynomials.

We begin in Section 2 with background on abelian categories, constructible sets and functions, and *stack functions* on Artin \mathbb{K} -stacks, following [7,8]. Stack functions are a universal generalization of constructible functions, containing more information. Section 3 reviews the previous

Download English Version:

https://daneshyari.com/en/article/4667652

Download Persian Version:

https://daneshyari.com/article/4667652

<u>Daneshyari.com</u>