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Values shared by meromorphic functions and their derivatives

SUJOY MAJUMDER

Department of Mathematics, Katwa College, Burdwan, 713130, India

Received 31 December 2014; received in revised form 18 December 2015; accepted 16 January 2016
Available online 3 February 2016

Abstract. In this paper we deal with the problem of uniqueness of meromorphic functions
as well as their power which share a small function with their derivatives and obtain some
results which improve and generalize the recent results due to Zhang and Yang (2009) and
Sheng and Zongsheng (2012).
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1. INTRODUCTION DEFINITIONS AND RESULTS

In this paper, by a meromorphic function we will always mean a meromorphic function in
the complex plane C. We adopt the standard notations of Nevanlinna theory of meromorphic
functions as explained in [4]. It will be convenient to let E denote any set of positive real
numbers of finite linear measure, not necessarily same at each occurrence. For a non-constant
meromorphic function h, we denote by T (r, h) Nevanlinna characteristic function of h and
by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}, as r −→ ∞ and r ∉ E.

Let k be a positive integer and a ∈ C ∪ {∞}. We use Nk)(r, a; f) to denote counting
function of a-points of f with multiplicity ≤k, N(k+1(r, a; f) to denote counting function
of a-points of f with multiplicity >k. Similarly Nk)(r, a; f) and N (k+1(r, a; f) are their
reduced functions respectively.

Let f and g be two non-constant meromorphic functions and let a be a complex number.
We say that f and g share a CM, provided that f − a and g − a have the same zeros with the
same multiplicities. Similarly, we say that f and g share a IM, provided that f − aand g − a
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have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if
1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

A meromorphic function a is said to be a small function of f provided that T (r, a) =
S(r, f), that is T (r, a) = o(T (r, f)) as r −→ ∞, r ∉ E.

During the last four decades uniqueness theory of entire and meromorphic functions has
become a prominent branch of value distribution theory (see [12]).

Rubel–Yang [6] proposed to investigate uniqueness of an entire function f under the
assumption that f and its derivative f ′ share two complex values. Subsequently, related
to one or two value sharing similar considerations have been made with respect to higher
derivatives and more general (linear) differential expressions by Brück [1], Gundersen [2],
Mues–Steinmetz [5], Yang [8].

In this direction an interesting problem still open is the following conjecture proposed by
Brück [1]:

Conjecture 1.1. Let f be a non-constant entire function. Suppose

ρ1(f) := lim sup
r→∞

log log T (r, f)
log r

is not a positive integer or infinite. If f and f ′ share one finite value a CM, then

f
′ − a

f − a
= c

for some non-zero constant c.

The case that a = 0 and that N(r, 0; f ′) = S(r, f) had been proved by Brück [1] while
the case that f is of finite order had been proved by Gundersen–Yang [3]. However, the
corresponding conjecture for meromorphic functions fails in general (see [3]).

To the knowledge of the author perhaps Yang–Zhang [10] (see also [13]) were the first to
consider uniqueness of a power of a meromorphic (entire) function F = fn and its derivative
F ′ when they share a certain value as this type of consideration gives the most specific form
of the function.

As a result during the last decade, growing interest has been devoted to this setting of
meromorphic functions. Improving all the results obtained in [10], Zhang [13] proved the
following theorem.

Theorem A ([13]). Let f be a non-constant meromorphic function, n, k be positive integers
and a(z)(≢ 0, ∞) be a meromorphic small function of f . Suppose fn − a and (fn)(k) − a
share the value 0 CM and

(n − k − 1)(n − k − 4) > 3k + 6, (1.1)

then fn ≡ (fn)(k), and f assumes the form

f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.
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