

On the positive weak almost limited operators

NABIL MACHRAFI^{a,*}, AZIZ ELBOUR^b, KAMAL EL FAHRI^a, KHALID BOURAS^c

^a Department of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kenitra 14000, Morocco ^b Department of Mathematics, Faculty of Sciences and Technologies, Moulay Ismaïl University, P.O. Box 509,

Erachidia 52000, Morocco

^c Faculty Polydisciplinary, Abdelmalek Essaadi University, P.O. Box 745, Larache 92004, Morocco

Received 8 November 2014; accepted 5 February 2015 Available online 14 February 2015

Abstract. Using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish some new characterizations of positive weak almost limited operators on Banach lattices. Consequently, we derive some results about the weak Dunford–Pettis* and the Dunford–Pettis* property of σ -Dedekind complete Banach lattices.

Keywords: Weak almost limited operator; The weak Dunford-Pettis* property; Banach lattice

2010 Mathematics Subject Classification: primary 46B42; secondary 46B50; 47B65

1. INTRODUCTION AND NOTATIONS

Throughout this paper X, Y will denote real Banach spaces, and E, F will denote real Banach lattices. E^+ denotes the positive cone of E and sol (A) denotes the solid hull of a subset A of a Banach lattice. The notation $x_n \perp x_m$ will mean that the sequence (x_n) of a Banach lattice is disjoint, that is, $|x_n| \wedge |x_m| = 0$, $n \neq m$. An operator $T : E \to F$ is positive if $T(x) \ge 0$ in F whenever $x \ge 0$ in E. A lattice seminorm ρ on a Banach lattice E is a seminorm such that for every $x, y \in E$, $|x| \le |y|$ implies $\rho(x) \le \rho(y)$. The closed unit ball associated to a lattice seminorm ρ is defined by $B_{\rho} = \{x \in E : \rho(x) \le 1\}$. The lattice operations in a Banach lattice E (resp. E') are weakly (resp. weak*) sequentially continuous if for every weakly null sequence (x_n) in E (resp. weak* null sequence (f_n) in E'), $|x_n| \to 0$ for $\sigma(E, E')$ (resp. $|f_n| \to 0$ for $\sigma(E', E)$). Finally, we will use the term

* Corresponding author.

E-mail addresses: nmachrafi@gmail.com (N. Machrafi), azizelbour@hotmail.com (A. Elbour), kamalelfahri@gmail.com (K.El Fahri), bouraskhalid@hotmail.com (K. Bouras). Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2015.02.001

^{1319-5166 © 2015} The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

operator $T: E \to F$ between two Banach lattices to mean a bounded linear mapping. We refer to [1,6] for unexplained terminology of Banach lattice theory and positive operators.

Several types of the Dunford–Pettis property are considered in the theory of Banach lattices. Namely, a Banach lattice E has

- the Dunford–Pettis property, whenever $x_n \xrightarrow{w} 0$ in E and $f_n \xrightarrow{w} 0$ in E' imply $f_n(x_n) \to 0$.
- the Dunford-Pettis* property, whenever $x_n \xrightarrow{w} 0$ in E and $f_n \xrightarrow{w^*} 0$ in E' imply $f_n(x_n) \rightarrow 0$.
- the weak Dunford-Pettis property (abb. wDP property) [7], whenever

$$x_n \perp x_m, x_n \xrightarrow{w} 0$$
 in E and $f_n \xrightarrow{w} 0$ in E' imply $f_n(x_n) \to 0$.

- the weak Dunford-Pettis* property (abb. wDP* property), whenever

 $x_n \xrightarrow{w} 0$ in E and $f_n \perp f_m, f_n \xrightarrow{w^*} 0$ in E' imply $f_n(x_n) \to 0$.

The wDP* property, introduced recently by J. X. Chen et al. [3], is a weak version of the Dunford–Pettis* property and stronger than the wDP property. Note that the weak Dunford–Pettis* property is related to the so called *weak almost limited* operators. An operator $T: E \to F$ between Banach lattices is said to be weak almost limited [4], whenever

$$x_n \xrightarrow{w} 0$$
 in E and $f_n \perp f_m, f_n \xrightarrow{w} 0$ in F' imply $f_n(T(x_n)) \to 0$.

Clearly, a Banach lattice E has the weak Dunford–Pettis* property if and only if the identity operator on E is weak almost limited.

Let us recall that an operator $T : X \to Y$ is said to be *limited* if $||T^*(f_n)|| \to 0$ for every weak* null sequence $(f_n) \subset Y^*$. Furthermore, An operator $T : X \to E$ from a Banach space into a Banach lattice is said to be *almost limited* [5], if $||T^*(f_n)|| \to 0$ for every disjoint weak* null sequence $(f_n) \subset E^*$. Accordingly, a Banach lattice E is said to have the *Schur property* (resp. *dual Schur property* [5]), if weakly null sequences in Eare norm null (resp. disjoint weak* null sequences in E' are norm null). For a σ -Dedekind complete Banach lattice E (see [5, Theorem 3.3]), the dual Schur property coincide with the so called *dual positive Schur property* [2], that is, weak* null sequences in $(E')^+$ are norm null. Clearly, a Banach lattice E has the dual Schur property if and only if the identity operator on E is almost limited. For an operator $T : E \to F$ between Banach lattices the following implications are clear:

T is limited \Rightarrow T is almost limited \Rightarrow T is weak almost limited.

However, there is a weak almost limited operator which needs not to be almost limited (and hence limited). Indeed, the identity operator $I : \ell^1 \to \ell^1$ is weak almost limited as ℓ^1 has the Schur (wDP*) property. But, as ℓ^1 does not have the dual positive Schur property [8, Proposition 2.1], $I : \ell^1 \to \ell^1$ is not almost limited. On the other hand, the identity operator on the Banach lattice c is not weak almost limited. Indeed, let $f_n \in c^* = \ell^1$ be such that $f_n = (0, \ldots, 0, 1_{(2n)}, -1_{(2n+1)}, 0, \ldots)$. Then (f_n) is a disjoint weak* null sequence in c^* [3, Example 2.1(2)], and clearly, the sequence (x_n) defined by $x_n = (0, \ldots, 0, 1_{(2n)}, 0, \ldots) \in c$ is weakly null, but $f_n(x_n) = 1$ for all n.

In this paper, using the concept of approximately order bounded sets with respect to a lattice seminorm, we establish a characterization of positive weak almost limited operators

Download English Version:

https://daneshyari.com/en/article/4668515

Download Persian Version:

https://daneshyari.com/article/4668515

Daneshyari.com