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Statistical convergence of order α in probability
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Abstract. In this paper the ideas of different types of convergence of a sequence of
random variables in probability, namely, statistical convergence of order α in probability,
strong p-Cesàro summability of order α in probability, lacunary statistical convergence or
Sθ-convergence of order α in probability, and Nθ-convergence of order α in probability
have been introduced and their certain basic properties have been studied.
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1. INTRODUCTION AND BACKGROUND

The idea of convergence of a real sequence has been extended to statistical convergence by
Fast [14] and Steinhaus [31] as follows: If N denotes the set of natural numbers and K ⊂ N,
then K(m, n) denotes the cardinality of the set K ∩ [m, n]. The upper and lower natural
density of the subset K is defined by

d̄(K) = lim
n→∞

sup
K(1, n)

n
and d(K) = lim

n→∞
inf

K(1, n)
n

.
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If d̄(K) = d(K), then we say that the natural density of K exists, and it is denoted simply by

d(K) = lim
n→∞

K(1, n)
n

.

A sequence {xn}n∈N of real numbers is said to be statistically convergent to a real number
x if for each ε > 0, the set K = {n ∈ N : |xn − x| ≥ ε} has natural density zero

and we write xn
S−→ x. Statistical convergence has turned out to be one of the most active

areas of research in summability theory after the work of Fridy [16] and Šalát [28]. Over the
years a lot of work have been done to generalize this notion of statistical convergence and
to introduce new summability methods related to it. Some of the most important concepts
introduced are : lacunary statistical convergence by Fridy & Orhan [18] (for more results on
this convergence see the paper of Li [24]), I -convergence by Kostyrko et al. [23], (see [1,8,9,
11,29] for recent advances and more references on this convergence), statistical convergence
of order α by Bhunia et al. [2] (statistical convergence of order α was also independently
introduced by Colak [4], more investigations in this direction and more applications can be
found in [5]), lacunary statistical convergence of order α by Sengöl & Et. M [30], pointwise
and uniform statistical convergence of order α for sequences of functions by Cinar et al. [3],
λ-statistical convergence of order α of sequences of function by Et. M et al. [13], I -statistical
and I -lacunary statistical convergence of order α by Savas & Das [10], open covers and
selection principles by Das [6,7]. The notion of statistical convergence has applications in
different fields of mathematics: in number theory by Erdös & Tenenbaum [12], in statistics
and probability theory by Fridy & Khan [17] and Ghosal [20–22], in approximation theory
by Gadjiev & Orhan [19], in Hopfield neural network by Martinez et al. [25], in optimization
by Pehlivan & Mamedov [26].

In particular in probability theory, if for each positive integer n, a random variable Xn is
defined on a given event space S (same for each n) with respect to a given class of events △
and a probability function P : △ → R (where R denotes the set of real numbers) then we say
that X1, X2, X3, . . . , Xn, . . . is a sequence of random variables and as in analysis we denote
this sequence by {Xn}n∈N.

From the practical point of view the discussion of a random variable X is highly significant
if it is known that there exists a real constant c for which P (|X − c| < ϵ) ≃ 1, where ϵ > 0 is
sufficiently small, that is, it is nearly certain that values of X lie in a very small neighbourhood
of c.

For a sequence of random variables {Xn}n∈N, each Xn may not have the above property
but it may happen that the aforementioned property (with respect to a real constant c) becomes
more and more distinguishable as n gradually increases and the question of existence of such
a real constant c can be answered by a concept of convergence in probability of the sequence
{Xn}n∈N.

In this short paper we shall limit our discussion to four types of convergence of a sequence
of random variables, namely,
(i) statistical convergence of order α in probability,
(ii) strong p-Cesàro summability of order α in probability,
(iii) lacunary statistical convergence or Sθ-convergence of order α in probability,
(iv) Nθ-convergence of order α in probability.

Our main aim in this paper is to establish some important theorems related to the modes
of convergence (i)–(iv), which effectively extend and improve all the existing results in
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