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Applications of an identity of Andrews
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Abstract.  In this paper, we give a bilateral form of an identity of Andrews, which is a
generalization of the ;3 summation formula of Ramanujan. Using Andrews’ identity,
we deduce some new identities involving mock theta functions of second order and
finally, we deduce some ¢g-gamma, g-beta and eta function identities.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In 1981, Andrews [2] has established the following identity
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where as usual
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(@), = (@ q), = [[(1 - ag"),
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(a,ax,a3,... an), = (a1),(a2),(a3), - (@),
(ar,a2,a5,...,a,) = (1) (a2) (a3) - (@n)-
This identity was proved using several summation and transformation formulae involv-

ing basic hypergeometric series. Putting 4 = 0, a = — g/a, B = b/a and b = —z in
(1.1), we obtain the well-known 1y/; summation formula of Ramanujan [9].
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As indicated by Andrews [2] in his paper, Agarwal [1] and Kang [6] have proved (1.1)
using the three term transformation formula of 3¢,-series [3, Equation (I11.33), p. 364].
Recently, Liu [7] obtained the following equivalent form of (1.1) using (1.2) along with
Roger-Fine identity by employing g-exponential operators.

Theorem 1.3. If| al,Ibl < 1, then
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One can recover (1.1) from (1.3) by using Sears transformation for 3¢»-series [3,
Equation (II1.9), p. 359].
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The main objective of this paper is to give a bilateral form of (1.3). As applications
of (1.3) we derive some new identities involving mock theta functions of second order
and also some g-gamma, ¢-beta and eta-function identities.

The g-gamma function I'j(x), was introduced by Thomae [11] and later by Jackson
[5] as

r,(x) = (qfx (1-¢)'™, 0<g<l. (1.4)
(4%)
g-Beta function is defined by
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A relation between g-Beta function and ¢g-gamma function is given by
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The Dedekind eta function is defined by
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