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The differential pencils with turning point on the half line
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Abstract.  We investigate the inverse spectral problem of recovering pencils of
second-order differential operators on the half-line with turning point. Using the
asymptotic distribution of the Weyl function, we give a formulation of the inverse
problem and prove the uniqueness theorem for the solution of the inverse problem.
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1. INTRODUCTION

We consider the differential equation

V' (x) + (p*R(x) + ipgy (x) + gy (x))p(x) =0, x >0, (1)
on the half-line with nonlinear dependence on the spectral parameter p. Let @ > 1, and

R(x) = { (2)

i.e., the sign of the weight-function changes in an interior point x = a, which is called
the turning point. The functions g(x), j = 0,1, are complex-valued, g;(x) is absolutely
continuous and (1 + x)qj(.l) € L(0,00) for 0 </<j< 1.

Differential equations with spectral parameter and turning point arise in various
problems of mathematics (see, for example, Tamarkin [7]). The classical Sturm-—
Liouville operators with turning points in the finite interval have been studied fairly
completely in Freiling and Schneider [2]. Indefinite differential pencils produce

-1, 0< x<a,
x—1, x=a,
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significant qualitative modification in the investigation of the inverse problem. Some
aspects of the inverse problem theory for differential pencils without turning points
were studied in Khruslov and Shepelsky [5] and Yurko [8]. In Freiling and Yurko
[3.4], the inverse problem was investigated for differential equations with m turning
points. Also the inverse problem was investigated for differential pencils with turn-
ing point and nonlinear dependence on the spectral parameter in Yurko [11,12].
Here we investigate the uniqueness solution of the inverse problem with turning
point when the weight-function changes in the linear form after turning point. As
the main spectral characteristic for the boundary value problem, we introduce the
so-called Weyl function.

In this paper, we will study the uniqueness theorem for Eq. (1) with spectral bound-
ary condition. In Section 2, we determine the asymptotic forms of the solutions of
Eq. (1) and derive characteristic function. In Section 3, we obtain the Weyl function
and establish a formulation of the inverse problem. In Section 4, we prove the
uniqueness theorem.

2. PRIMARY RESULTS

We consider the boundary value problem L for Eq. (1) on the half-line with the bound-
ary condition

U(y) = (0) + (Bip + By)y(0) =0, (3)
where the coefficients f, and f, are complex numbers and f;# =1. Denote
M=+ :={p: £Imp > 0}, y:={p:Imp = 0}. By the well-known method (see, Mennic-
ken and Moller [6]; Tamarkin [7] and Freiling and Yurko [4]), we obtain a solution

e(x,p) of the Eq. (1) (which is called the Jost-type solution) with the following
properties:

Theorem 2.1. Eq. (1) has a unique solution y = e(x,p), p €1+, x = a, with the
following properties:

1. For each fixed x > a, the functions ¢’ (x,p), v = 0,1, are holomorphic for p € T1,
and p € T1_ (i.e., they are piecewise holomorphic).

2. The functions e (x,p), v = 0,1, are continuous for x > a,p € IL, and p € TI_ (we
differ the sides of the cut Tly). In other words, for real p, there exist the finite limits

Vix,p)= lim e (x,2).
z—p, zelly
Moreover, the funclions_e(") (x,p),v = 0,1, are continuously differentiable with respect to
peTL,\ {0} and p € TI \ {0}.
3. For x — oo,p € I14 \ {0}, v=0,1,
), -\ v—1 .
e (x, p) = (Fip) R(x)"exp(£(ipx — O(x)))(1 + o(1)), (4)

where Q(x) =1 [ ¢q,(1)dL.
4. For |p| — o0,p € Iy, v=0,1, uniformly in x > a,

e (x, p) = (Fip)' R(x) exp((ipx — Q(x))1], (5)
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