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Denote by Z+ the set of all nonnegative integer numbers. Let 
An be an m ×m invertible q-periodic complex matrix, for all 
n ∈ Z+ and some positive integers m and q. First we prove 
that the discrete problem

xn+1 = Anxn, xn ∈ C
m (An)

is Hyers–Ulam stable if and only if the monodromy matrix Tq

associated to the family A = {An}n∈Z+ possesses a discrete 
dichotomy.
Let (an), (bn) be complex valued 2-periodic sequences. 
Consider the non-autonomous recurrence

zn+2 = anzn+1 + bnzn, n ∈ Z+, zn ∈ C (an, bn)

and the matrix

An =
(

1 1
an + bn − 1 an − 1

)
, n ∈ Z+.
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We prove that the recurrence (an, bn) is Hyers–Ulam stable 
if and only if the monodromy matrix T2 := A1A0 has no 
eigenvalues on the unit circle.

© 2016 Elsevier Masson SAS. All rights reserved.

The concept of exponential dichotomy for linear differential systems was introduced 
by O. Perron in 1930 [29]. Perron established the connection between the exponential 
dichotomy and the conditional stability of the system

ẋ(t) = A(t)x(t) + f(t, x(t)) (1)

in the context of finite dimensional spaces. Extensions of Perron’s work to the general 
framework of infinite dimensional Banach spaces were obtained by M.G. Krein, R. Bell-
man, J.L. Massera and J.J. Schäffer in the period 1948–1966 (see [10,12,25]) and these 
authors studied the case when A(t) are bounded linear operators. The case of unbounded 
coefficients was studied in [8,9,27,35] (see also the references therein).

The idea of passing from evolution equations to difference equations and vice versa 
has a long history that goes back to D. Henry [19].

The general framework of the stability problem for functional equations arose in 1940, 
due to a certain question posed by S.M. Ulam which was enunciated during a lecture 
which he delivered in front of the Club of Mathematics of the University of Wisconsin. In 
a particular case, this problem can be formulated as follows (see [36] for further details).

Given a metric group (G, ·, d), a positive number ε, and a mapping f : G → G

satisfying the inequality

d(f(x · y), f(x) · f(y)) ≤ ε for all x, y ∈ G, (2)

does there exist a positive constant L and an automorphism g of G such that 
d(f(x), g(x)) ≤ L for all x ∈ G?

In 1941, D.H. Hyers [22] gave an affirmative answer to the Ulam Problem when G is 
the additive group of a real Banach space E. He showed that if f : E → E is a function 
verifying

‖f(x + y) − f(x) − f(y)‖ ≤ ε, ∀x, y ∈ E, (3)

where ε is a given positive number, then the map

x �→ g(x) := lim
n→∞

2−nf(2nx) : E → E (4)

is correctly defined and

‖g(x) − f(x)‖ ≤ ε (5)
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