

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Transportation-cost inequalities on path spaces over manifolds carrying geometric flows

Li-Juan Cheng

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

ARTICLE INFO

Article history: Received 3 February 2015 Available online 14 September 2015

MSC: primary 60J60 secondary 58J65, 53C44

Keywords:
Geometric flow
Ricci flow
Transportation-cost inequality
Curvature
Path space
(Reflecting) L_t-diffusion processes

ABSTRACT

Let $L_t := \Delta_t + Z_t$ for a $C^{1,1}$ -vector field Z on a differential manifold M possibly with a boundary ∂M , where Δ_t is the Laplacian operator induced by a time dependent metric g_t differentiable in $t \in [0, T_c)$. In this article, by constructing suitable coupling, transportation-cost inequalities on the path space of the (reflecting if $\partial M \neq \varnothing$) diffusion process generated by L_t are proved to be equivalent to a new curvature lower bound condition and the convexity of the geometric flow (i.e., the boundary keeps convex). Some of them are further extended to non-convex flows by using conformal changes of the flows. As an application, these results are applied to the Ricci flow with the umbilic boundary.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this study, we aim to establish transportation-cost inequalities associated with the uniform distance, which is on the path space of (reflecting) diffusion processes over manifolds carrying a complete geometric flow. More precisely, our base manifold is a d-dimensional differential manifold M possibly with boundary ∂M equipped with

E-mail address: chenglj@zjut.edu.cn.

a family of complete Riemannian metrics $(g_t)_{t\in[0,T_c)}$ for some $T_c\in(0,\infty]$, which is C^1 in t. Let ∇^t and Ric_t be, respectively, the Levi-Civita connection and the Ricci curvature tensor associated with the metric g_t . For simplicity, we take the notation: for $X,Y\in TM$,

$$\mathcal{R}_t^Z(X,Y) := \operatorname{Ric}_t(X,Y) - \left\langle \nabla_X^t Z_t, Y \right\rangle_t - \frac{1}{2} \partial_t g_t(X,Y),$$

where Z_t is a $C^{1,1}$ -vector field and $\langle \cdot, \cdot \rangle_t := g_t(\cdot, \cdot)$. Define the second fundamental form of the boundary with respect to g_t by

$$II_t(X,Y) = -\langle \nabla_X^t N_t, Y \rangle_t$$
, for all $X, Y \in T\partial M$,

where N_t is the inward unit normal vector field of the boundary associated with the metric g_t and $T\partial M$ is the tangent space of ∂M . If $\Pi_t \geq 0$ for all $t \in [0, T_c)$, i.e., ∂M keeps convex for all $t \in [0, T_c)$, then we call $\{g_t\}$ a convex flow.

Consider the elliptic operator $L_t := \Delta_t + Z_t$ on $[0, T_c) \times M$, where Δ_t is the Laplacian operator with respect to the metric g_t and Z is a $C^{1,1}$ -vector field. Let $\mu \in \mathcal{P}(M)$, where $\mathcal{P}(M)$ is the set including all probability measures on M. A (reflecting) diffusion process X^{μ} , generated by L_t with initial distribution μ , can be constructed as in [4]. Assume that X_t^{μ} is non-explosive before time T_c , by a similar discussion as in [5, Corollary 2.2], which is the case if

$$\mathcal{R}_t^Z \ge K(t)$$
, for some $K \in C([0, T_c))$ and $II_t \ge 0$ (if $\partial M \ne \emptyset$), $t \in [0, T_c)$. (1.1)

When $\mu = \delta_x$, we simply denote $X_t^{\delta_x} = X_t^x$. Moreover, by [4], we know that X_t^x solves the following equation

$$dX_t = \sqrt{2u_t} \circ dB_t + Z_t(X_t)dt + N_t(X_t)dI_t, \ X_0 = x,$$
(1.2)

where $B_t := (B_t^1, B_t^2, \dots, B_t^d)$ is a \mathbb{R}^d -valued Brownian motion on a complete filtered probability space $(\Omega, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$ with the natural filtration $\{\mathscr{F}_t\}_{t\geq 0}, u_t$ is the horizontal lift process of X_t and l_t is an increasing process supported on $\{t \geq 0 : X_t \in \partial M\}$. Note that if $\partial M = \varnothing$, then $l_t = 0$.

Given $\mu \in \mathscr{P}(M)$ and $0 \leq S < T < T_c$, let $\Pi_{\mu}^{[S,T]}$ be the distribution of $X_{[S,T]} := \{X_t : t \in [S,T]\}$ with initial law μ at time S. Then $\Pi_{\mu}^{[S,T]}$ is a probability measure on $W^{[S,T]} := C([S,T];M)$ with σ -field $\mathcal{F}^{[S,T]}$ induced by cylindrically measurable functions. When S = 0, we simply denote $\Pi_{\mu}^T := \Pi_{\mu}^{[0,T]}$ and $W^T := W^{[0,T]}$. Our aim is to establish transportation-cost inequalities for $\Pi_{\mu}^{[S,T]}$ under some new curvature conditions, which may include the influence from the time changing of the metric.

Transportation-cost inequality was first introduced by Talagrand [15] in 1996 to bound from above the L^2 -Wasserstein distance to the standard Gaussian measure on \mathbb{R}^d by the relative entropy. This inequality has been extended to distributions on finite- and infinite-dimensional spaces. In particular, this inequality was established on the path space of

Download English Version:

https://daneshyari.com/en/article/4668673

Download Persian Version:

https://daneshyari.com/article/4668673

<u>Daneshyari.com</u>