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1. Introduction

Let ¢ be a C? strictly sub harmonic function in the complex plane C, i.e. with A the
Laplacian, Ag > 0 in C. Let A%(C, e~2%) be the space of all holomorphic functions g in
C such that

2
P / g2 =244 < oo,
C
with dA the Lebesgue measure in C. Suppose that f € L?(C,e??) verifies
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Vg € A*(C,e™?%), /fgdA =0 (1.1)
C

then in a recent paper H. Hedenmalm [2] proved

Theorem 1.1. Suppose that f € L?*(C,e??) wverifies condition (1.1) then there exists a
solution to the 0-equation Ou = f with

1
/|u|2 e ApdA < §/|f|262“"dA.
C C

He adds in remark 1.3. that this theorem should generalize to the setting of several
complex variables. The aim of this note is to show that he was right.

Let ¢ be a strictly plurisubharmonic function of class C? in the Stein manifold €. Let
c,(2) be the smallest eigenvalue of d0p(z), then Vz € Q, ¢y, (2) > 0.

We denote by Lg;;(ﬂ, e?) the currents in Lfg’q(Q, e¥) with compact support in Q and
H,(Q,e~%) the space of all (p, 0), 9 closed forms in L?(2, e™¥).

If p=0, Ho(2) = H(Q) is the space of holomorphic functions in Q. In particular for
we L2, (Qe) weset: w L Hy,_p(Q,e” %) provided that Vh € H,—p(Q,e7%), (w, h) = 0.
This will be more precisely defined in the next section for Stein manifolds.

We shall prove
Theorem 1.2. Let Q be a pseudo convexr domain in C"; if w € LZ:Z(Q, e?) with 0w = 0
ifq <nandw € Lg,q(ﬂ,e“") with w L Hp_p(Q, e7%) if ¢ = n, then there is u €
L2 - 1(Q, ¢ e?) such that du = w, and

||u||L2(Q,c¢e<P) < C||W||L2(Q,ev)~

Clearly Theorem 1.2 generalizes Hedenmalm’s theorem, because in one variable, we
have ¢ = n = 1 and no compactness assumption on the support of w is required.

Remark 1.3. A way to see the difference between the cases ¢ = n and ¢ < n is the
following.

For ¢ = n, w is automatically d-closed, but not automatically the 0 of a rapidly
decaying form, which is a reason the orthogonality condition appears. On the other
hand, for ¢ < n if w is a smooth O-closed form with compact support, by Andreotti
Grauert it is the  of another compactly supported form.

In fact, in the case where w € L;q(ﬂ,e‘/’), dw = 0 and ¢ < n, I don’t know if there
is a solution u € L%’qfl(Q, cpe¥) such that Ju = w when w is not compactly supported.

Never the less I have the feeling that, in the case of 2 = C", this is true.

In the case ) is a Stein manifold, the result is more restrictive: we need to take a
p.s.h. ezhaustion function ¢ in C*°(Q). These ¢ always exist in a Stein manifold by
theorem 5.2.10 in [3].
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