

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Serre duality and Hörmander's solution of the $\bar{\partial}$ -equation

霐

Eric Amar

IMB, 351 cours de la Libération, 33405 Talence, France

A R T I C L E I N F O

Article history: Received 3 June 2015 Available online 22 March 2016

MSC: 32W05 32Q28 46B10

Keywords: d_bar equation Serre duality Stein manifold

ABSTRACT

We use duality in the manner of Serre to generalize a theorem of Hedenmalm on solution of the $\bar{\partial}$ equation with inverse of the weight in Hörmander L^2 estimates.

 \odot 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let φ be a \mathcal{C}^2 strictly sub harmonic function in the complex plane \mathbb{C} , i.e. with Δ the Laplacian, $\Delta \varphi > 0$ in \mathbb{C} . Let $A^2(\mathbb{C}, e^{-2\varphi})$ be the space of all holomorphic functions g in \mathbb{C} such that

$$\|g\|_{L^2(\mathbb{C},e^{-2\varphi})} := \int\limits_{\mathbb{C}} |g|^2 e^{-2\varphi} dA < \infty,$$

with dA the Lebesgue measure in \mathbb{C} . Suppose that $f \in L^2(\mathbb{C}, e^{2\varphi})$ verifies

 $\label{eq:http://dx.doi.org/10.1016/j.bulsci.2016.01.004 \\ 0007\text{-}4497/ © 2016 Elsevier Masson SAS. All rights reserved.$

E-mail address: Eric.Amar@math.u-bordeaux1.fr.

$$\forall g \in A^2(\mathbb{C}, e^{-2\varphi}), \ \int_{\mathbb{C}} fg dA = 0$$
(1.1)

then in a recent paper H. Hedenmalm [2] proved

Theorem 1.1. Suppose that $f \in L^2(\mathbb{C}, e^{2\varphi})$ verifies condition (1.1) then there exists a solution to the $\bar{\partial}$ -equation $\bar{\partial}u = f$ with

$$\int_{\mathbb{C}} |u|^2 e^{2\varphi} \Delta \varphi dA \leq \frac{1}{2} \int_{\mathbb{C}} |f|^2 e^{2\varphi} dA.$$

He adds in remark 1.3. that this theorem should generalize to the setting of several complex variables. The aim of this note is to show that he was right.

Let φ be a strictly plurisubharmonic function of class C^2 in the Stein manifold Ω . Let $c_{\varphi}(z)$ be the smallest eigenvalue of $\partial \bar{\partial} \varphi(z)$, then $\forall z \in \Omega, c_{\varphi}(z) > 0$.

We denote by $L^{2,c}_{p,q}(\Omega, e^{\varphi})$ the currents in $L^2_{p,q}(\Omega, e^{\varphi})$ with *compact support* in Ω and $\mathcal{H}_p(\Omega, e^{-\varphi})$ the space of all $(p, 0), \bar{\partial}$ closed forms in $L^2(\Omega, e^{-\varphi})$.

If p = 0, $\mathcal{H}_0(\Omega) = \mathcal{H}(\Omega)$ is the space of holomorphic functions in Ω . In particular for $\omega \in L^2_{p,n}(\Omega, e^{\varphi})$ we set: $\omega \perp \mathcal{H}_{n-p}(\Omega, e^{-\varphi})$ provided that $\forall h \in \mathcal{H}_{n-p}(\Omega, e^{-\varphi})$, $\langle \omega, h \rangle = 0$. This will be more precisely defined in the next section for Stein manifolds.

We shall prove

Theorem 1.2. Let Ω be a pseudo convex domain in \mathbb{C}^n ; if $\omega \in L^{2,c}_{p,q}(\Omega, e^{\varphi})$ with $\overline{\partial}\omega = 0$ if q < n and $\omega \in L^2_{p,q}(\Omega, e^{\varphi})$ with $\omega \perp \mathcal{H}_{n-p}(\Omega, e^{-\varphi})$ if q = n, then there is $u \in L^2_{p,q-1}(\Omega, c_{\varphi}e^{\varphi})$ such that $\overline{\partial}u = \omega$, and

$$\|u\|_{L^2(\Omega, c_{\varphi} e^{\varphi})} \le C \|\omega\|_{L^2(\Omega, e^{\varphi})}.$$

Clearly Theorem 1.2 generalizes Hedenmalm's theorem, because in one variable, we have q = n = 1 and no compactness assumption on the support of ω is required.

Remark 1.3. A way to see the difference between the cases q = n and q < n is the following.

For q = n, ω is automatically $\bar{\partial}$ -closed, but not automatically the $\bar{\partial}$ of a rapidly decaying form, which is a reason the orthogonality condition appears. On the other hand, for q < n if ω is a smooth $\bar{\partial}$ -closed form with compact support, by Andreotti Grauert it is the $\bar{\partial}$ of another compactly supported form.

In fact, in the case where $\omega \in L^2_{p,q}(\Omega, e^{\varphi})$, $\bar{\partial}\omega = 0$ and q < n, I don't know if there is a solution $u \in L^2_{p,q-1}(\Omega, c_{\varphi}e^{\varphi})$ such that $\bar{\partial}u = \omega$ when ω is not compactly supported. Never the less I have the feeling that, in the case of $\Omega = \mathbb{C}^n$, this is true.

In the case Ω is a Stein manifold, the result is more restrictive: we need to take a p.s.h. *exhaustion* function φ in $\mathcal{C}^{\infty}(\Omega)$. These φ always exist in a Stein manifold by theorem 5.2.10 in [3].

748

Download English Version:

https://daneshyari.com/en/article/4668687

Download Persian Version:

https://daneshyari.com/article/4668687

Daneshyari.com