

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

The weighted composition operators as intertwining operators for holomorphic Lie group representations

Hélène Airault ^{a,b,*}, Souheyl Jendoubi ^c, Habib Ouerdiane ^c

- ^a Insset, 48, rue Raspail, 02100, Saint-Quentin (Aisne), France
- ^b LAMFA, UMR 7352 CNRS, Université de Picardie Jules Verne,
- 33, rue Saint-Leu, 80039, Amiens, France
- ^c Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El-Manar, 1060 Tunis, Tunisia

ARTICLE INFO

Article history: Received 13 April 2014 Available online 7 November 2014

MSC:

primary 47B33, 58D20 secondary 17B15, 22E45, 43A85

Keywords:
Affine group
Intertwining operators
Holomorphic representations
Weighted composition operators

ABSTRACT

Let D_1 and D_2 be domains in \mathbb{C}^n and let ζ , η be holomorphic functions on D_1 such that $\eta(D_1)\subset D_2$ and $\zeta:D_1\to\mathbb{C}$. In this paper, we determine necessary and sufficient conditions on ζ , η in order that the weighted composition operator $W_{\zeta,\eta}$ induced by ζ and η be an intertwining operator of holomorphic Lie group representations having the form $(T_g^{(j)}F)(z)=h_g^{(j)}(z)F(k_g^{(j)}(z)),\ j=1,2,$ where $h_g^{(j)}:D_j\to\mathbb{C}$ and $k_g^{(j)}:D_j\to D_j$ are holomorphic on D_j and g is an element of the Lie group G. Furthermore, we examine conditions on ζ , η to ensure that $W_{\zeta,\eta}$ is also an intertwining operator for the infinitesimal representation of T_g given by

$$(\rho^{(j)}(v)F)(z) = \frac{d}{d\epsilon}\Big|_{\epsilon=0} T_{g_{\epsilon}}^{(j)}F(z),$$

where $(g_{\epsilon})_{\epsilon \in \mathbb{R}}$ is a smooth one-parameter subgroup of G such that $v = \frac{d}{d\epsilon}|_{\epsilon=0}g_{\epsilon}$ belongs to the Lie algebra of G.

© 2014 Elsevier Masson SAS. All rights reserved.

^{*} Corresponding author at: Insset, 48, rue Raspail, 02100, Saint-Quentin (Aisne), France. E-mail addresses: helene.airault@u-picardie.fr (H. Airault), souheyl.jendoubi@ipein.rnu.tn (S. Jendoubi), habib.ouerdiane@fst.rnu.tn (H. Ouerdiane).

0. Introduction

Our project deals with the study of intertwining operators for the square integrable holomorphic Lie group representations as well as for their infinitesimal representations established in [2,7]. Given a Lie group G and a positive real measure μ on a domain D in the Euclidean space $\mathbb{C}^n \cong \mathbb{R}^{2n}$, we denote by $\mathcal{H}(D)$ the vector space of holomorphic functions $F: D \to \mathbb{C}$. If $|F|^2$ is μ -integrable, we denote $F \in \mathcal{H}(D) \cap L^2(\mu)$. The space $\mathcal{H}(D) \cap L^2(\mu)$ with the hermitian form

$$(F_1, F_2)_{\mu} = \int_{D} F_1(z) \overline{F_2(z)} \, \mathrm{d}\mu(z) \quad \text{for } F_1, F_2 \in \mathcal{H}(D) \cap L^2(\mu), \tag{0.1}$$

is a Hilbert space. Consider operators $T_g:\mathcal{H}(D)\to\mathcal{H}(D)$ where $g\in G$ and such that

1.
$$(T_g F)(z) = h_g(z) F(k_g(z)), \quad \forall F \in \mathcal{H}(D)$$
 (0.2)

where $h_g: D \to \mathbb{C}$ and $k_g: D \to D$ are holomorphic and k_g is an automorphism of D.

- 2. For $g_1, g_2 \in G$, we have $T_{g_1}(T_{g_2}F) = T_{g_1g_2}F$.
- 3. T_g is unitary, if $F \in \mathcal{H}(D) \cap L^2(\mu)$

$$\int_{D} \left| (T_g F)(z) \right|^2 d\mu(z) = \int_{D} \left| F(z) \right|^2 d\mu(z), \quad \forall g \in G.$$

$$(0.3)$$

Let e denote the neutral element of G then $(T_eF)(z) = F(z)$. Therefore, T_g is invertible with $(T_g)^{-1} = T_{g^{-1}}$. The conditions (1) and (2) together imply

$$h_{g_1}(z)h_{g_2}(k_{g_1}(z)) = h_{g_1g_2}(z)$$
 and $k_{g_2}(k_{g_1}(z)) = k_{g_1g_2}(z)$. (0.4)

When (1), (2), (3) are satisfied, we say that μ is unitarising for the representation T_g , and we denote the unitary representation of G by (T_g, μ) (see [2,3,7]). This is the case of (0.5) below. Let $k_g(z) = g^{-1}.z$, where g.z is a left action (respectively $k_g(z) = z.g$ a right action) of G on the domain D and let $k'_g(z)$ be the complex Jacobian of $k_g(z)$. For $\varphi, F \in \mathcal{H}(D)$ and $\alpha \in \mathbb{R}$, we put

$$(T_g^{\alpha,\varphi}F)(z) = (\det(k_g'(z)))^{\alpha} e^{\varphi(k_g(z)) - \varphi(z)} F(k_g(z)).$$
 (0.5)

We have shown in [2] that if there exists a holomorphic map $\Lambda: D \times D \to \mathbb{C}$ such that $z \to \Lambda(z, \overline{z})$ on D satisfies

$$\left| \det \left(k_g'(z) \right) \right|^{2\alpha - 2} \left| \Lambda(z, \overline{z}) \right| = \left| \Lambda(k_g(z), \overline{k_g(z)}) \right|, \quad \forall g \in G, \ \forall z \in D,$$
 (0.6)

Download English Version:

https://daneshyari.com/en/article/4668695

Download Persian Version:

https://daneshyari.com/article/4668695

<u>Daneshyari.com</u>