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Let D1 and D2 be domains in Cn and let ζ, η be holomor-
phic functions on D1 such that η(D1) ⊂ D2 and ζ : D1 → C. 
In this paper, we determine necessary and sufficient condi-
tions on ζ, η in order that the weighted composition oper-
ator Wζ,η induced by ζ and η be an intertwining operator 
of holomorphic Lie group representations having the form 
(T (j)

g F )(z) = h
(j)
g (z)F (k(j)

g (z)), j = 1, 2, where h(j)
g : Dj → C

and k(j)
g : Dj → Dj are holomorphic on Dj and g is an ele-

ment of the Lie group G. Furthermore, we examine conditions 
on ζ, η to ensure that Wζ,η is also an intertwining operator 
for the infinitesimal representation of Tg given by

(
ρ(j)(v)F

)
(z) =

d

dε

∣∣∣∣
ε=0

T (j)
gε

F (z),

where (gε)ε∈R is a smooth one-parameter subgroup of G such 
that v = d

dε
|ε=0gε belongs to the Lie algebra of G.
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0. Introduction

Our project deals with the study of intertwining operators for the square integrable 
holomorphic Lie group representations as well as for their infinitesimal representations 
established in [2,7]. Given a Lie group G and a positive real measure μ on a domain D
in the Euclidean space Cn ∼= R

2n, we denote by H(D) the vector space of holomorphic 
functions F : D → C. If |F |2 is μ-integrable, we denote F ∈ H(D) ∩ L2(μ). The space 
H(D) ∩ L2(μ) with the hermitian form

(F1, F2)μ =
∫
D

F1(z)F2(z) dμ(z) for F1, F2 ∈ H(D) ∩ L2(μ), (0.1)

is a Hilbert space. Consider operators Tg : H(D) → H(D) where g ∈ G and such that

1. (TgF )(z) = hg(z)F
(
kg(z)

)
, ∀F ∈ H(D) (0.2)

where hg : D → C and kg : D → D are holomorphic and kg is an automorphism 
of D.

2. For g1, g2 ∈ G, we have Tg1(Tg2F ) = Tg1g2F .
3. Tg is unitary, if F ∈ H(D) ∩ L2(μ)

∫
D

∣∣(TgF )(z)
∣∣2 dμ(z) =

∫
D

∣∣F (z)
∣∣2 dμ(z), ∀g ∈ G. (0.3)

Let e denote the neutral element of G then (TeF )(z) = F (z). Therefore, Tg is invertible 
with (Tg)−1 = Tg−1 . The conditions (1) and (2) together imply

hg1(z)hg2

(
kg1(z)

)
= hg1g2(z) and kg2

(
kg1(z)

)
= kg1g2(z). (0.4)

When (1), (2), (3) are satisfied, we say that μ is unitarising for the representation Tg, 
and we denote the unitary representation of G by (Tg, μ) (see [2,3,7]). This is the case 
of (0.5) below. Let kg(z) = g−1.z, where g.z is a left action (respectively kg(z) = z.g

a right action) of G on the domain D and let k′g(z) be the complex Jacobian of kg(z). 
For ϕ, F ∈ H(D) and α ∈ R, we put

(
Tα,ϕ
g F

)
(z) =

(
det

(
k′g(z)

))α
eϕ(kg(z))−ϕ(z)F

(
kg(z)

)
. (0.5)

We have shown in [2] that if there exists a holomorphic map Λ : D ×D → C such that 
z → Λ(z, z) on D satisfies

∣∣det
(
k′g(z)

)∣∣2α−2∣∣Λ(z, z)
∣∣ =

∣∣Λ(kg(z), kg(z))∣∣, ∀g ∈ G, ∀z ∈ D, (0.6)
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