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In this paper we study some estimates of norms in variable ex-
ponent Lebesgue spaces for maximal multiplier operators. We 
will consider the case when multiplier is the Fourier transform 
of a compactly supported Borel measure.
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1. Introduction

Let f∧(ξ) =
∫
Rn e−2πix·ξf(x)dx be a Fourier transform of f . Given a multiplier m ∈

L∞(Rn), we define the operators Mt, t > 0, by (Mtf)∧(ξ) = f̂(ξ)m(tξ) and the maximal 
multiplier operator
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Mmf(x) := sup
t>0

|(Mtf)(x)|

which is well defined a priori for a Schwartz functions S(Rn).
It is well known, if multiplier m satisfies the well known Mikhlin–Hörmander condition

|∂αm(ξ)| ≤ Cα|ξ|α

for all (or sufficiently large) multiindices α, if F−1f(ξ) =
∫
Rn e2πix·ξf(x)dx is a reverse 

Fourier transform, then the multiplier operator f �→ F−1[mf̂ ] is bounded in Lp(Rn)
when 1 < p < ∞ (see [12,15,7,11]). Note that maximal operator Mm formed by multi-
plier m with the Mikhlin–Hörmander condition in general not bounded on Lp(Rn). The 
corresponding example can be found in [4].

We will consider the case when multiplier m is the Fourier transform of a compactly 
supported Borel measure. In this case the operator Mt, t > 0, we can represent as a 
convolution operator

Mtf(x) =
∫
S

f(x− ty)dσ(y),

where σ is a compactly supported Borel measure on the set S ⊂ R
n and σ̂(ξ) = m(ξ). 

Obviously we have

Mmf(x) ≡ MSf(x) := sup
t>0

∣∣∣∣∣∣
∫
S

f(x− ty)dσ(y)

∣∣∣∣∣∣ .
We say that σ is locally uniformly β-dimensional (β > 0) if σ(B(x, R)) ≤ CβR

β , where 
B(x, R) is a ball of radius R ≤ 1 centered at x. It is easy to see that a locally uniformly 
β-dimensional measure must be absolutely continuous with respect to β-dimensional 
Hausdorff measure μβ, but such a measure need not exhibit any actual “fractal” be-
havior. Thus, for example, Lebesgue measure is locally uniformly β-dimensional for any 
β < n. We can allow β = 0 in these definitions, in which case a measure σ is uniformly 
0-dimensional if and only if it is finite, and locally uniformly bounded, i.e. σ(B(x, 1)) is 
uniformly bounded in x.

Rubio de Francia [16] proved the following

Theorem 1.1. If m(ξ) is the Fourier transform of a compactly supported Borel measure 
and satisfies |m(ξ)| ≤ (1 + |ξ|)−a for some a > 1/2 and all ξ ∈ R

n, then the maximal 
operator Mm maps Lp(Rn) to itself when p > 2a+1

2a .

The case when σ is normalized surface measure on the (n −1)-dimensional unit sphere 
was investigated by Stein [17]. According to Stein’s theorem for corresponding maximal 
operator (spherical maximal operator)



Download	English	Version:

https://daneshyari.com/en/article/4668712

Download	Persian	Version:

https://daneshyari.com/article/4668712

Daneshyari.com

https://daneshyari.com/en/article/4668712
https://daneshyari.com/article/4668712
https://daneshyari.com/

