

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II

霐

Thorsten Holm^a, Peter Jørgensen^{b,*}

 ^a Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
^b School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

ARTICLE INFO

Article history: Received 27 March 2014 Available online 8 May 2015

MSC: 05E10 13F60 16G70 18E30

Keywords: Auslander-Reiten triangle Categorification Cluster algebra Cluster category Cluster tilting object Rigid object

АВЅТ КАСТ

It is an important aspect of cluster theory that cluster categories are "categorifications" of cluster algebras. This is expressed formally by the (original) Caldero–Chapoton map X which sends certain objects of cluster categories to elements of cluster algebras.

Let $\tau c \to b \to c$ be an Auslander–Reiten triangle. The map X has the salient property that $X(\tau c)X(c) - X(b) = 1$. This is part of the definition of a so-called frieze, see [1].

The construction of X depends on a cluster tilting object. In a previous paper [14], we introduced a modified Caldero–Chapoton map ρ depending on a rigid object; these are more general than cluster tilting objects. The map ρ sends objects of sufficiently nice triangulated categories to integers and has the key property that $\rho(\tau c)\rho(c) - \rho(b)$ is 0 or 1. This is part of the definition of what we call a generalised frieze.

Here we develop the theory further by constructing a modified Caldero–Chapoton map, still depending on a rigid object, which sends objects of sufficiently nice triangulated categories to elements of a commutative ring A. We derive conditions under which the map is a generalised frieze, and show how

* Corresponding author.

E-mail addresses: holm@math.uni-hannover.de (T. Holm), peter.jorgensen@ncl.ac.uk (P. Jørgensen). *URLs:* http://www.iazd.uni-hannover.de/~tholm (T. Holm), http://www.staff.ncl.ac.uk/peter.jorgensen (P. Jørgensen).

http://dx.doi.org/10.1016/j.bulsci.2015.05.001 0007-4497/© 2015 Elsevier Masson SAS. All rights reserved.

the conditions can be satisfied if A is a Laurent polynomial ring over the integers.

The new map is a proper generalisation of the maps X and ρ . © 2015 Elsevier Masson SAS. All rights reserved.

0. Introduction

we have

The (original) Caldero-Chapoton map X is an important object in cluster theory. The arguments of X are certain objects of a cluster category, and the values are the corresponding elements of a cluster algebra. The map X expresses that the cluster category is a categorification of the cluster algebra, see [7,9,10,13,17]. For example, Fig. 1 shows the Auslander-Reiten (AR) quiver of $C(A_5)$, the cluster category of Dynkin type A_5 , with a useful "coordinate system". Fig. 2 shows the AR quiver again, with the values of X on the indecomposable objects of $C(A_5)$. The values are Laurent polynomials over \mathbb{Z} ; indeed, the cluster algebra consists of such Laurent polynomials.

It is a salient property of X that it is a *frieze* in the sense of [1], that is, if $\tau c \to b \to c$ is an AR triangle then

$$X(\tau c)X(c) - X(b) = 1,$$

see [12, Theorem] and [7, Prop. 3.10]. In the case of $C(A_5)$, this means that for each "diamond" in the AR quiver, of the form

The definition of X depends on a cluster tilting object T. For instance, the X shown in Fig. 2 depends on the T which has the indecomposable summands shown by red and blue vertices in Fig. 1.

 $X(\tau c)X(c) - X(b_1)X(b_2) = 1.$

This paper is about a modified Caldero–Chapoton map ρ which is more general than X in two respects: it depends on a rigid object R and has values in a general commutative ring A. An object R is rigid if $\operatorname{Hom}(R, \Sigma R) = 0$. This is much weaker than being cluster tilting: recall that T is cluster tilting if $\operatorname{Hom}(T, \Sigma t) = 0 \Leftrightarrow t \in \operatorname{add} T \Leftrightarrow \operatorname{Hom}(t, \Sigma T) = 0$. Our first main result gives conditions under which ρ is a *generalised frieze*, in the sense that if $\tau c \to b \to c$ is an AR triangle then

Download English Version:

https://daneshyari.com/en/article/4668714

Download Persian Version:

https://daneshyari.com/article/4668714

Daneshyari.com